龙空技术网

一文读懂使用MySQL的JSON类型结构存储数据

单纯蛋糕 278

前言:

而今我们对“mysql json数组解析”都比较关切,大家都想要分析一些“mysql json数组解析”的相关文章。那么小编同时在网上搜集了一些有关“mysql json数组解析””的相关资讯,希望兄弟们能喜欢,朋友们快快来学习一下吧!

JSON 类型是从 MySQL 5.7 版本开始支持的功能,而 8.0 版本解决了更新 JSON 的日志性能瓶颈。如果要在生产环境中使用 JSON 数据类型,强烈推荐使用 MySQL 8.0 版本。

关系型的结构化存储存在一定的弊端,因为它需要预先定义好所有的列以及列对应的类型。但是业务在发展过程中,或许需要扩展单个列的描述功能,这时如果能用好 JSON 数据类型,那就能打通关系型和非关系型数据的存储之间的界限,为业务提供更好的架构选择。

当然,很多同学在用 JSON 数据类型时会遇到各种各样的问题,其中最容易犯的误区就是将类型 JSON 简单理解成字符串类型。这篇文章介绍到 JSON 数据类型用法,从而在实际工作中更好地存储非结构化的数据。

JSON 数据类型

JSON(JavaScript Object Notation)主要用于互联网应用服务之间的数据交换。MySQL 支持RFC 7159定义的 JSON 规范,主要有 JSON 对象 和 JSON 数组 两种类型。下面就是 JSON 对象,主要用来存储图片的相关信息:

{ "Image": {   "Width": 800,   "Height": 600,   "Title": "View from 15th Floor",   "Thumbnail": {     "Url": ";,     "Height": 125,     "Width": 100   }, "IDs": [116, 943, 234, 38793] }}

从中你可以看到, JSON 类型可以很好地描述数据的相关内容,比如这张图片的宽度、高度、标题等(这里使用到的类型有整型、字符串类型)。

JSON对象除了支持字符串、整型、日期类型,JSON 内嵌的字段也支持数组类型,如上代码中的 IDs 字段。

另一种 JSON 数据类型是数组类型,如:

[   {     "precision": "zip",     "Latitude": 37.7668,     "Longitude": -122.3959,     "Address": "",     "City": "SAN FRANCISCO",     "State": "CA",     "Zip": "94107",     "Country": "US"   },   {     "precision": "zip",     "Latitude": 37.371991,     "Longitude": -122.026020,     "Address": "",     "City": "SUNNYVALE",     "State": "CA",     "Zip": "94085",     "Country": "US"   } ]

上面的示例演示的是一个 JSON 数组,其中有 2 个 JSON 对象。

到目前为止,可能很多同学会把 JSON 当作一个很大的字段串类型,从表面上来看,没有错。但本质上,JSON 是一种新的类型,有自己的存储格式,还能在每个对应的字段上创建索引,做特定的优化,这是传统字段串无法实现的。JSON 类型的另一个好处是无须预定义字段,字段可以无限扩展。而传统关系型数据库的列都需预先定义,想要扩展需要执行 ALTER TABLE … ADD COLUMN … 这样比较重的操作。

业务表结构设计实战

用户登录设计

在数据库中,JSON 类型比较适合存储一些修改较少、相对静态的数据,比如用户登录信息的存储如下:

DROP TABLE IF EXISTS UserLogin;CREATE TABLE UserLogin (    userId BIGINT NOT NULL,    loginInfo JSON,    PRIMARY KEY(userId));

由于当前业务的登录方式越来越多样化,如同一账户支持手机、微信、QQ 账号登录,所以这里可以用 JSON 类型存储登录的信息。

接着,插入下面的数据:

SET @a = '{   "cellphone" : "1",   "wxchat" : "码农",   "77" : "1"}';INSERT INTO UserLogin VALUES (1,@a);SET @b = '{    "cellphone" : "1188"}';INSERT INTO UserLogin VALUES (2,@b);

从上面的例子中可以看到,用户 1 登录有三种方式:手机验证码登录、微信登录、QQ 登录,而用户 2 只有手机验证码登录。

而如果不采用 JSON 数据类型,就要用下面的方式建表:

SELECT    userId,    JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.cellphone")) cellphone,    JSON_UNQUOTE(JSON_EXTRACT(loginInfo,"$.wxchat")) wxchatFROM UserLogin;+--------+-------------+--------------+| userId | cellphone   | wxchat       |+--------+-------------+--------------+|      1 | 11| 码农     ||      2 | 11| NULL         |+--------+-------------+--------------+2 rows in set (0.01 sec)

当然了,每次写 JSON_EXTRACT、JSON_UNQUOTE 非常麻烦,MySQL 还提供了 ->> 表达式,和上述 SQL 效果完全一样:

SELECT     userId,    loginInfo->>"$.cellphone" cellphone,    loginInfo->>"$.wxchat" wxchatFROM UserLogin;

当 JSON 数据量非常大,用户希望对 JSON 数据进行有效检索时,可以利用 MySQL 的 函数索引 功能对 JSON 中的某个字段进行索引。

比如在上面的用户登录示例中,假设用户必须绑定唯一手机号,且希望未来能用手机号码进行用户检索时,可以创建下面的索引:

ALTER TABLE UserLogin ADD COLUMN cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone");ALTER TABLE UserLogin ADD UNIQUE INDEX idx_cellphone(cellphone);

上述 SQL 首先创建了一个虚拟列 cellphone,这个列是由函数 loginInfo->>"$.cellphone" 计算得到的。然后在这个虚拟列上创建一个唯一索引 idx_cellphone。这时再通过虚拟列 cellphone 进行查询,就可以看到优化器会使用到新创建的 idx_cellphone 索引:

EXPLAIN SELECT  *  FROM UserLogin WHERE cellphone = '11'\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: UserLogin   partitions: NULL         type: constpossible_keys: idx_cellphone          key: idx_cellphone      key_len: 1023          ref: const         rows: 1     filtered: 100.00        Extra: NULL1 row in set, 1 warning (0.00 sec)

当然,我们可以在一开始创建表的时候,就完成虚拟列及函数索引的创建。如下表创建的列 cellphone 对应的就是 JSON 中的内容,是个虚拟列;uk_idx_cellphone 就是在虚拟列 cellphone 上所创建的索引。

CREATE TABLE UserLogin (    userId BIGINT,    loginInfo JSON,    cellphone VARCHAR(255) AS (loginInfo->>"$.cellphone"),    PRIMARY KEY(userId),    UNIQUE KEY uk_idx_cellphone(cellphone));
用户画像设计

某些业务需要做用户画像(也就是对用户打标签),然后根据用户的标签,通过数据挖掘技术,进行相应的产品推荐。比如:

在电商行业中,根据用户的穿搭喜好,推荐相应的商品;

在音乐行业中,根据用户喜欢的音乐风格和常听的歌手,推荐相应的歌曲;

在金融行业,根据用户的风险喜好和投资经验,推荐相应的理财产品。

在这,我强烈推荐你用 JSON 类型在数据库中存储用户画像信息,并结合 JSON 数组类型和多值索引的特点进行高效查询。假设有张画像定义表:

CREATE TABLE Tags (    tagId bigint auto_increment,    tagName varchar(255) NOT NULL,    primary key(tagId));SELECT * FROM Tags;+-------+--------------+| tagId | tagName      |+-------+--------------+|     1 | 70后         ||     2 | 80后         ||     3 | 90后         ||     4 | 00后         ||     5 | 爱运动       ||     6 | 高学历       ||     7 | 小资         ||     8 | 有房         ||     9 | 有车         ||    10 | 常看电影     ||    11 | 爱网购       ||    12 | 爱外卖       |+-------+--------------+

可以看到,表 Tags 是一张画像定义表,用于描述当前定义有多少个标签,接着给每个用户打标签,比如用户 David,他的标签是 80 后、高学历、小资、有房、常看电影;用户 Tom,90 后、常看电影、爱外卖。

若不用 JSON 数据类型进行标签存储,通常会将用户标签通过字符串,加上分割符的方式,在一个字段中存取用户所有的标签:

+-------+---------------------------------------+|用户    |标签                                   |+-------+---------------------------------------+|David  |80后 ; 高学历 ; 小资 ; 有房 ;常看电影   ||Tom    |90后 ;常看电影 ; 爱外卖                 |+-------+---------------------------------------+

这样做的缺点是:不好搜索特定画像的用户,另外分隔符也是一种自我约定,在数据库中其实可以任意存储其他数据,最终产生脏数据。

用 JSON 数据类型就能很好解决这个问题:

DROP TABLE IF EXISTS UserTag;CREATE TABLE UserTag (    userId bigint NOT NULL,    userTags JSON,    PRIMARY KEY (userId));INSERT INTO UserTag VALUES (1,'[2,6,8,10]');INSERT INTO UserTag VALUES (2,'[3,10,12]');

其中,userTags 存储的标签就是表 Tags 已定义的那些标签值,只是使用 JSON 数组类型进行存储。

MySQL 8.0.17 版本开始支持 Multi-Valued Indexes,用于在 JSON 数组上创建索引,并通过函数 member of、json_contains、json_overlaps 来快速检索索引数据。所以你可以在表 UserTag 上创建 Multi-Valued Indexes:

ALTER TABLE UserTagADD INDEX idx_user_tags ((cast((userTags->"$") as unsigned array)));

如果想要查询用户画像为常看电影的用户,可以使用函数 MEMBER OF:

EXPLAIN SELECT * FROM UserTag WHERE 10 MEMBER OF(userTags->"$")\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: UserTag   partitions: NULL         type: refpossible_keys: idx_user_tags          key: idx_user_tags      key_len: 9          ref: const         rows: 1     filtered: 100.00        Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTag WHERE 10 MEMBER OF(userTags->"$");+--------+---------------+| userId | userTags      |+--------+---------------+|      1 | [2, 6, 8, 10] ||      2 | [3, 10, 12]   |+--------+---------------+2 rows in set (0.00 sec)

如果想要查询画像为 80 后,且常看电影的用户,可以使用函数 JSON_CONTAINS:

EXPLAIN SELECT * FROM UserTag WHERE JSON_CONTAINS(userTags->"$", '[2,10]')\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: UserTag   partitions: NULL         type: rangepossible_keys: idx_user_tags          key: idx_user_tags      key_len: 9          ref: NULL         rows: 3     filtered: 100.00        Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTag WHERE JSON_CONTAINS(userTags->"$", '[2,10]');+--------+---------------+| userId | userTags      |+--------+---------------+|      1 | [2, 6, 8, 10] |+--------+---------------+1 row in set (0.00 sec)

如果想要查询画像为 80 后、90 后,且常看电影的用户,则可以使用函数 JSON_OVERLAP:

EXPLAIN SELECT * FROM UserTag WHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]')\G*************************** 1. row ***************************           id: 1  select_type: SIMPLE        table: UserTag   partitions: NULL         type: rangepossible_keys: idx_user_tags          key: idx_user_tags      key_len: 9          ref: NULL         rows: 4     filtered: 100.00        Extra: Using where1 row in set, 1 warning (0.00 sec)SELECT * FROM UserTag WHERE JSON_OVERLAPS(userTags->"$", '[2,3,10]');+--------+---------------+| userId | userTags      |+--------+---------------+|      1 | [2, 6, 8, 10] ||      2 | [3, 10, 12]   |+--------+---------------+2 rows in set (0.01 sec)

JSON 类型是 MySQL 5.7 版本新增的数据类型,用好 JSON 数据类型可以有效解决很多业务中实际问题。最后,我总结下今天的重点内容:

使用 JSON 数据类型,推荐用 MySQL 8.0.17 以上的版本,性能更好,同时也支持 Multi-Valued Indexes;

JSON 数据类型的好处是无须预先定义列,数据本身就具有很好的描述性;

不要将有明显关系型的数据用 JSON 存储,如用户余额、用户姓名、用户身份证等,这些都是每个用户必须包含的数据;

JSON 数据类型推荐使用在不经常更新的静态数据存储。

标签: #mysql json数组解析 #mysql手机号码用什么数据类型