龙空技术网

文心一言 VS 讯飞星火 VS chatgpt (51)-- 算法导论6.2 3题

福大大架构师每日一题 103

前言:

目前你们对“算法导论第四章递归树答案”大约比较珍视,大家都需要分析一些“算法导论第四章递归树答案”的相关文章。那么小编同时在网络上汇集了一些关于“算法导论第四章递归树答案””的相关知识,希望小伙伴们能喜欢,兄弟们快快来了解一下吧!

三、当元素 A[i] 比其孩子的值都大时,调用 MAX-HEAPIFY(A.i)会有什么结果?文心一言:

当元素 A[i] 比其孩子的的值都大时,调用 MAX-HEAPIFY(A, i) 会将 A[i] 与其孩子中的最小值进行交换,并将 A[i] 视为新的根节点。这个操作会使得以 A[i] 为根节点的子树满足最大堆的性质,即根节点比其左右孩子大。

具体来说,假设 A[i] 的左孩子为 A[2i],右孩子为 A[2i+1],则 MAX-HEAPIFY(A, i) 的操作过程如下:

1.将 A[i] 与其孩子中的最小值进行交换,即与 A[2i] 或 A[2i+1] 进行交换。

2.递归调用 MAX-HEAPIFY(A, 2i) 对左子树进行操作,将左子树的最大元素交换到 A[2i]。

3.递归调用 MAX-HEAPIFY(A, 2i+1) 对右子树进行操作,将右子树的最大元素交换到 A[2i+1]。

通过这些操作,以 A[i] 为根节点的子树会满足最大堆的性质,即 A[i] 大于其左右孩子。

在这里插入图片描述

讯飞星火:

代码解决方案:在 Python 中,可以使用 heapq 模块来实现堆数据结构。当元素 A[i] 比其孩子的值都大时,调用 MAX-HEAPIFY(A.i) 会将 A[i] 与其孩子中的最小值交换位置,从而重新调整堆的形状,使其满足堆的性质。具体来说,MAX-HEAPIFY(A.i) 会将 A[i] 与其子节点中的最小值交换位置,并递归地对子节点进行相同的操作,直到所有子节点都被处理完毕。以下是一个示例代码,演示了如何使用 heapq 模块实现堆:

import heapq# 创建一个空堆heap = []# 向堆中添加元素heapq.heappush(heap, 3)heapq.heappush(heap, 1)heapq.heappush(heap, 5)heapq.heappush(heap, 2)# 打印堆中的元素print(heap)  # [1, 2, 5, 3]# 将 A[0](值为 1)与其孩子中的最小值交换位置heapq._siftup(heap, 0)# 打印交换后的堆中的元素print(heap)  # [1, 2, 3, 5]# 将 A[1](值为 2)与其孩子中的最小值交换位置heapq._siftup(heap, 1)# 打印交换后的堆中的元素print(heap)  # [1, 2, 3, 5]# 将 A[2](值为 5)与其孩子中的最小值交换位置heapq._siftup(heap, 2)# 打印交换后的堆中的元素print(heap)  # [1, 2, 5, 3]# 将 A[3](值为 3)与其孩子中的最小值交换位置heapq._siftup(heap, 3)# 打印交换后的堆中的元素print(heap)  # [1, 2, 3, 5]# 将 A[4](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 4)# 打印交换后的堆中的元素print(heap)  # [1, None, None, None]# 将 A[0](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 0)# 打印交换后的堆中的元素print(heap)  # [None, None, None, None]# 将 A[1](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 1)# 打印交换后的堆中的元素print(heap)  # [None, None, None, None]# 将 A[2](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 2)# 打印交换后的堆中的元素print(heap)  # [None, None, None, None]# 将 A[3](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 3)# 打印交换后的堆中的元素print(heap)  # [None, None, None, None]# 将 A[4](值为 None)与其孩子中的最小值交换位置heapq._siftup(heap, 4)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

华为盘古:

在这种情况下,调用 MAX-HEAPIFY(A.i) 会返回一个非常大的值,因为它包含了元素 A 所代表的所有孩子的值。

例如,如果元素 A 代表一个孩子,而它的所有孩子(即所有元素)的值都比元素 A 小,那么调用 MAX-HEAPIFY(A.i) 将返回 100。

但是,如果元素 A 代表一个父亲,而它的所有孩子(即所有元素)的值都比元素 A 大,那么调用 MAX-HEAPIFY(A.i) 将返回 10。

在这里插入图片描述

360智脑:

当元素 A[i] 比其孩子的值都大时,表示 A[i] 的左右孩子中有一个或多个是负数,因此需要将 A[i] 重新赋值为它的左孩子的最大值或者右孩子的最小值。这样可以保证最大堆的性质不变。具体来说,如果 A[i] 的左孩子是正数,那么将 A[i] 重新赋值为 A[left_max];如果 A[i] 的右孩子是负数,那么将 A[i] 重新赋值为 A[right_min]。最终得到的新的最大堆仍然是一棵完全二叉树,符合最大堆的定义。

在这里插入图片描述

chatglm:

当元素 A[i] 比其孩子的值都大时,调用 MAX-HEAPIFY(A.i) 会将 A[i] 及其子节点进行最大堆调整,使得 A[i] 仍然是最大值。

具体来说,MAX-HEAPIFY 函数会对节点 A[i] 进行以下操作:

1.将 A[i] 的最大孩子节点 A[2i+1] 和 A[2i+2] 进行交换,如果 A[2i+1] 比 A[2i+2] 大,则不交换。

2.如果 A[2i+1] 比 A[i] 大,则将 A[i] 和 A[2i+1] 进行交换,并继续递归调用 MAX-HEAPIFY(A.2*i+1)。

3.如果 A[2i+2] 比 A[i] 大,则将 A[i] 和 A[2i+2] 进行交换,并继续递归调用 MAX-HEAPIFY(A.2*i+2)。

4.如果 A[2i+1] 和 A[2i+2] 比 A[i] 都小,则最大堆调整结束。

由于 A[i] 比其孩子节点的值都大,因此在最大堆调整过程中,A[i] 始终保持最大值,最终的最大堆调整结果仍然是 A[i] 为最大值。

在这里插入图片描述

chatgpt:

当元素 A[i] 比其孩子的值都大时,调用 MAX-HEAPIFY(A.i) 不会对堆产生任何改变。由于 A[i] 已经符合最大堆的性质,因此不需要进行任何调整操作。

在这里插入图片描述

总结

不进行操作,程序结束。

福大大架构师每日一题java当死,golang当立。最新面试题,涉及golang,rust,mysql,redis,云原生,算法,分布式,网络,操作系统。588篇原创内容

公众号

收录于合集 #福大大架构师每日一题

861个

上一篇文心一言 VS 讯飞星火 VS chatgpt (50)-- 算法导论6.2 2题下一篇gmap构建离线地图,用createCustomerTiledLayer方法,瓦片地址尾部多了 ?x={x}&y={y}&z&{

标签: #算法导论第四章递归树答案