前言:
当前姐妹们对“后台算法类”大约比较看重,同学们都需要剖析一些“后台算法类”的相关知识。那么小编在网络上网罗了一些对于“后台算法类””的相关资讯,希望各位老铁们能喜欢,各位老铁们一起来学习一下吧!学习编程、学习Python最好的方式就是练习,哪怕是新手,只要不断地敲代码输出,肯定会有神效。
Python的练手项目很多,特别是Github上,建议不管新手、老司机都去看看。
这里推荐给大家一个Gitthub上练习的项目,算法仓库-algorithms。
这里面集合众多核心算法的Python实现,比如排序、图计算、回溯、队列、流计算、堆、搜索、压缩等等。
该仓库支持第三方库安装,在python中进行调用,非常方便。
首先使用pip进行安装:
pip3 install algorithms
然后导入相关模块进行调用,比如sort模块里的merge_sort归并排序算法。
from algorithms.sort import merge_sortif __name__ == "__main__": my_list = [1, 8, 3, 5, 6] my_list = merge_sort(my_list) print(my_list)
举几个常见的算法案例。
1、排序算法-桶排序
def bucket_sort(arr): ''' Bucket Sort Complexity: O(n^2) The complexity is dominated by nextSort ''' # The number of buckets and make buckets num_buckets = len(arr) buckets = [[] for bucket in range(num_buckets)] # Assign values into bucket_sort for value in arr: index = value * num_buckets // (max(arr) + 1) buckets[index].append(value) # Sort sorted_list = [] for i in range(num_buckets): sorted_list.extend(next_sort(buckets[i])) return sorted_listdef next_sort(arr): # We will use insertion sort here. for i in range(1, len(arr)): j = i - 1 key = arr[i] while arr[j] > key and j >= 0: arr[j+1] = arr[j] j = j - 1 arr[j + 1] = key return arr2、机器学习-最近邻插值法
import mathdef distance(x,y): """[summary] HELPER-FUNCTION calculates the (eulidean) distance between vector x and y. Arguments: x {[tuple]} -- [vector] y {[tuple]} -- [vector] """ assert len(x) == len(y), "The vector must have same length" result = () sum = 0 for i in range(len(x)): result += (x[i] -y[i],) for component in result: sum += component**2 return math.sqrt(sum)def nearest_neighbor(x, tSet): """[summary] Implements the nearest neighbor algorithm Arguments: x {[tupel]} -- [vector] tSet {[dict]} -- [training set] Returns: [type] -- [result of the AND-function] """ assert isinstance(x, tuple) and isinstance(tSet, dict) current_key = () min_d = float('inf') for key in tSet: d = distance(x, key) if d < min_d: min_d = d current_key = key return tSet[current_key]3、字符串解码编码
# Implement the encode and decode methods.def encode(strs): """Encodes a list of strings to a single string. :type strs: List[str] :rtype: str """ res = '' for string in strs.split(): res += str(len(string)) + ":" + string return resdef decode(s): """Decodes a single string to a list of strings. :type s: str :rtype: List[str] """ strs = [] i = 0 while i < len(s): index = s.find(":", i) size = int(s[i:index]) strs.append(s[index+1: index+1+size]) i = index+1+size return strs4、直方分布
def get_histogram(input_list: list) -> dict: """ Get histogram representation :param input_list: list with different and unordered values :return histogram: dict with histogram of input_list """ # Create dict to store histogram histogram = {} # For each list value, add one to the respective histogram dict position for i in input_list: histogram[i] = histogram.get(i, 0) + 1 return histogram
个人感觉这个仓库里的算法很齐全,适合做练习,小伙伴们可以试试。
如果小伙伴们想要所有算法脚本,可以在后台私信回复【b】,领取打包文件。
标签: #后台算法类 #算法题可以用python做马 #经典算法题python #算法algorithms第4版 #算法algorithms第4版答案