龙空技术网

2019年小升初必考知识点之——余数问题

伊人梧桐 344

前言:

当前兄弟们对“c语言直接输出取余算式答案不对”大概比较关注,大家都需要学习一些“c语言直接输出取余算式答案不对”的相关资讯。那么小编同时在网摘上网罗了一些关于“c语言直接输出取余算式答案不对””的相关知识,希望看官们能喜欢,咱们一起来学习一下吧!

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”

余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:

一、带余除法的定义及性质:

一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,

0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:

(1)当r=0 时:我们称a可以被b整除,q称为a除以b的商或完全商

(2)当r≠0 时:我们称a不可以被b整除,q称为a除以b的商或不完全商

一个完美的带余除法讲解模型:

图1

如图1,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。

二、三大余数定理:

1.余数的加法定理

a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.

当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.

2.余数的乘法定理

a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.

3.同余定理

若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:

若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除

用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)

习题1:用一个正整数去除另一个正整数,商是40,余数是16。被除数、除数、商、余数之和是933,求这两个数各是多少?

习题2:三个不同的自然数和为2001,他们分别除以19,23,31所得的商相同,所得的余数也相同,求这三个数各是多少?

标签: #c语言直接输出取余算式答案不对 #c语言求正余数