前言:
如今姐妹们对“python参考代码”可能比较看重,朋友们都想要分析一些“python参考代码”的相关内容。那么小编也在网摘上汇集了一些有关“python参考代码””的相关内容,希望同学们能喜欢,姐妹们一起来学习一下吧!一些常用的python代码合集,方便检索引用
模块1:读写excel文件
from datetime import datetimeimport odpsimport xlwtimport osfrom odps import DataFrameimport pandas as pdimport xlrdimport numpy as npfrom collections import defaultdictfrom collections import Counter# 写入工作簿def write_imf(fl_save_path, data): wb = xlwt.Workbook(encoding='utf-8') # 不写encoding会出现编码错误 sh = wb.add_sheet(u'data', cell_overwrite_ok=True) # 表头部分,单独写 colnames = data.columns.values for i in range(0, data.shape[1]): sh.write(0, i, colnames[i]) # 表内容,循环写入,好像没简便的方法 for i in range(1, len(data) + 1): for j in range(0, data.shape[1]): value = data.iloc[i - 1, j] # print(value) # 这里的坑特别多!!!数据读进来之后就成numpy.xxx64的类型了,在dataframe的时候就需要统一干掉! try: value.dtype if value.dtype == 'int64': value = int(value) # print('value is:%d,type is:%s'%(value,type(value))) if value.dtype == 'float64': value = float(value) # print('value is:%d,type is:%s' % (value, type(value))) except(RuntimeError, TypeError, NameError, ValueError, AttributeError): pass sh.write(i, j, value) wb.save(fl_save_path) print('congratulation save successful!')def save_pd_to_csv(fl_save_path, data): try: # 直接转csv不加encoding,中文会乱码 data.to_csv(fl_save_path, encoding="utf_8_sig", header=True, index=False) # 存储 return True except: return Falsedef get_excel_content(file_path): # 获取excel内的SQL语句,需要通过xlrd获取workbook中的SQL内容,或者读txt,后续改为配置文件 wb = xlrd.open_workbook(file_path, encoding_override='utf-8') sht = wb.sheet_by_index(0) # 默认第一个工作表 # print(sht.name) wb_cont_imf = [] nrows = sht.nrows # 行数 wb_cont_imf = [sht.row_values(i) for i in range(0, nrows)] # 第一个工作表内容按行循环写入 df = pd.DataFrame(wb_cont_imf[1:], columns=wb_cont_imf[0]) return df模块2:获取各种时间
# 获取年月第一天最后一天def getMonthFirstDayAndLastDay(year=None, month=None): """ :param year: 年份,默认是本年,可传int或str类型 :param month: 月份,默认是本月,可传int或str类型 :return: firstDay: 当月的第一天,datetime.date类型 lastDay: 当月的最后一天,datetime.date类型 """ if year: year = int(year) else: year = datetime.date.today().year if month: month = int(month) else: month = datetime.date.today().month # 获取当月第一天的星期和当月的总天数 firstDayWeekDay, monthRange = calendar.monthrange(year, month) # 获取当月的第一天 firstDay = datetime.date(year=year, month=month, day=1) lastDay = datetime.date(year=year, month=month, day=monthRange) # return firstDay, lastDay return lastDay模块3:pd中的dataframe转png
# dataframe2pngdef render_mpl_table(data, col_width=5.0, row_height=0.625, font_size=1, header_color='#40466e', row_colors=['#f1f1f2', 'w'], edge_color='w', bbox=[0, 0, 1, 1], header_columns=0, ax=None,**kwargs): if ax is None: # size = (np.array(data.shape[::-1]) + np.array([0, 1])) * np.array([col_width, row_height]) # fig, ax = plt.subplots(figsize=size) fig, ax = plt.subplots() # 创建一个空的绘图区 # 衍生知识点,服务器上安装中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 # plt.rcParams['font.sans-serif'] = ['WenQuanYi Zen Hei Mono'] plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.style.use('ggplot') ax.axis('off') mpl_table = ax.table(cellText=data.values, bbox=bbox, colLabels=data.columns, **kwargs) mpl_table.auto_set_font_size(False) mpl_table.set_fontsize(font_size) for k, cell in six.iteritems(mpl_table._cells): cell.set_edgecolor(edge_color) nrow = k[0] ncol = k[1] # 设置表格底色 if nrow == 0 or ncol < header_columns: cell.set_text_props(weight='bold', color='w') cell.set_facecolor(header_color) else: cell.set_facecolor(row_colors[k[0] % len(row_colors)]) # # 对当日异常数据为0的部分,着重体现 # row_num = [] # for k, cell in mpl_table._cells.items(): # nrow = k[0] # ncol = k[1] # val = cell.get_text().get_text() # if nrow > 0 and ncol == 2 and val != '0': # row_num.append(nrow) # for k, cell in six.iteritems(mpl_table._cells): # nrow = k[0] # # 设置表格底色 # if nrow in row_num: # cell.set_facecolor('gold') # 保留原图的设置 # fig.set_size_inches(width/100.0,height/100.0)#输出width*height像素 plt.gca().xaxis.set_major_locator(plt.NullLocator()) plt.gca().yaxis.set_major_locator(plt.NullLocator()) plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0) plt.margins(0, 0) return ax模块4:绘制词云
#!/user/bin/python# -*- coding:utf-8 -*-_author_ = 'xisuo'import datetimeimport calendarimport xlwtimport osimport pandas as pdimport xlrdimport openpyxlimport numpy as npfrom collections import defaultdictimport platformfrom wordcloud import WordCloud,STOPWORDSimport matplotlib.pyplot as pltfrom PIL import Imagedef create_wordcloud(docs=None,imgs=None,filename=None): ''' :param docs:读入词汇txt,尽量不重复 :param imgs: 读入想要生成的图形,网上随便找 :param filename: 保存图片文件名 :return: ''' # Read the whole text. text = open(os.path.join(current_file, docs)).read() alice_mask = np.array(Image.open(os.path.join(current_file, imgs))) print(font_path) wc = WordCloud(background_color="white", max_words=2000, font_path=font_path, # 设置字体格式,如不设置显示不了中文 mask=alice_mask, stopwords=STOPWORDS.add("said") ) # generate word cloud wc.generate(text) # store to file if filename is None:filename="词云结果.png" wc.to_file(os.path.join(current_file, filename))def main(): docs='demo.txt' #读入的文本 imgs="eg.jpg" #需要绘制的图像 filename='res_eg.png' #保存图片文件名 create_wordcloud(docs=docs,imgs=imgs,filename=filename) print('create wordcloud successful')if __name__ == '__main__': start_time = datetime.datetime.now() print('start running program at:%s' % start_time) systemp_type = platform.system() if (systemp_type == 'Windows'): plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 font_path='simfang.ttf' try: current_path = os.getcwd() except: current_path = os.path.dirname(__file__) current_file = os.path.join(current_path, 'docs') current_file = current_path elif (systemp_type == 'Linux'): font_path = 'Arial Unicode MS.ttf' plt.rcParams['font.family'] = ['Arial Unicode MS'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 current_file = '/home/xisuo/mhc_work/docs/' # 服务器上的路径 else: quit() if not os.path.exists(current_file): os.mkdir(current_file) print('目录中部存在docs文件夹,完成新文件夹创建过程。') print('当前操作系统:%s,文件存储路径为:%s' % (systemp_type, current_file)) main() end_time = datetime.datetime.now() tt = end_time - start_timepython print('ending time:%s', end_time) print('this analysis total spend time:%s' % tt.seconds)模块5:下载ppt素材
#!/user/bin/python#-*- coding:utf-8 -*-_author_ = 'xisuo'import urllib.requestimport requestsfrom bs4 import BeautifulSoupfrom lxml import etreeimport osurl=';response=requests.get(url).text# soup=BeautifulSoup(response,'lxml')# cont=soup.find('article', class_='article-content')html=etree.HTML(response)src_list=html.xpath('//div/article/p/img/@src')current_path=os.path.dirname(__file__)save_path=os.path.join(current_path,'ppt_img')if os.path.exists(save_path): passelse: os.mkdir(save_path) print('img folder create successful')i=1for src in src_list: save_img_path=os.path.join(save_path,'%d.jpg'%i) try: with open(save_img_path,'wb') as f: f.write(urllib.request.urlopen(src).read()) f.close() i=i+1 print('save true') except Exception as e: print('save img fail')模块6:模型存储和读取
rom sklearn import joblibfrom sklearn import svmfrom sklearn2pmml import PMMLPipeline, sklearn2pmmlimport pickledef save_model(train_X,train_y): '''' save model :return: ''' clf = svm.SVC() clf.fit(X, y) joblib.dump(clf, "train_model.m") sklearn2pmml(clf, "train_model.pmml") with open('train_model.pickle', 'wb') as f: pickle.dump(clf, f) return Truedef load_model(): ''' laod model :return: ''' clf_joblib=joblib.load('train_model.m') clf_pickle== pickle.load(open('linearregression.pickle','rb')) return clf_joblib,clf_pickle模块7:TF-IDF
import timeimport pandas as pdimport numpy as npfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.feature_extraction.text import TfidfVectorizer# 读取数据 - 性能不好待优化print('开始读取KeyTag标签...')read_data_path = 'D:/untitled/incomelevel_kwtag_20190801.txt'load_data = pd.read_csv(read_data_path, sep='\t',encoding='utf-8')data = pd.DataFrame(load_data,columns = ['income_level','kw_tag'])print('...读取KeyTag标签完成')# 将数据分组处理print('开始分组处理KeyTag标签...')# 高收入incomelevel_top = data[data['income_level'] == '高']incomelevel_top = incomelevel_top.head() #testkw_tag_top = ' '.join(incomelevel_top['kw_tag'])print('kw_tag_top : \n',kw_tag_top)# 中收入incomelevel_mid = data[data['income_level'] == '中']incomelevel_mid = incomelevel_mid.head() #testkw_tag_mid = ' '.join(incomelevel_mid['kw_tag'])print('kw_tag_mid : \n',kw_tag_mid)# 低收入incomelevel_low = data[data['income_level'] == '低']incomelevel_low = incomelevel_low.head() #testkw_tag_low = ' '.join(incomelevel_low['kw_tag'])print('kw_tag_low : \n',kw_tag_low)print('...分组处理KeyTag标签完成')# 开始加载TF-IDFvectorizer = CountVectorizer()result = vectorizer.fit_transform([kw_tag_top, kw_tag_mid, kw_tag_low])transformer = TfidfVectorizer()kw_tag_score = transformer.fit_transform([kw_tag_top, kw_tag_mid, kw_tag_low])print('...KeyTag分词结束')# 获取全量标签kw_tag_value = transformer.get_feature_names()result_target = pd.DataFrame(kw_tag_value,columns = ['kw_tag'])print('result_target : \n',result_target)# 分词得分处理tf_score = kw_tag_score.toarray()print('tf_score : \n',tf_score)kw_tag_score_top = pd.DataFrame(tf_score[0],columns = ['kw_tag_score_top']) # 217kw_tag_score_mid = pd.DataFrame(tf_score[1],columns = ['kw_tag_score_mid'])kw_tag_score_low = pd.DataFrame(tf_score[2],columns = ['kw_tag_score_low'])print(len(kw_tag_score_top))模块8:生成省市地图
import timeimport pandas as pdimport xlrdimport reimport matplotlib.pyplot as pltimport siximport numpy as np# 载入ppt和pyecharts相关的包from pyecharts.render import make_snapshotfrom snapshot_phantomjs import snapshotfrom pyecharts import options as optsfrom collections import defaultdictfrom pyecharts.charts import Bar, Geo, Map, Line,Funnel,Pageimport osfrom example.commons import Fakerdef create_zjs_map(): folder_path = os.getcwd() file_name = "白皮书数据地图.xlsx" file_path = os.path.join(folder_path, file_name) dat = get_excel_content(file_path, sheet_name="省份地图") df = dat[['城市', '渗透率']] df.columns = ['city', 'penarate'] print(df) # df['city'] = df['city'].apply(lambda x: reg.sub('', x)) citys = df['city'].values.tolist() values = df['penarate'].values.tolist() print(citys) print('{:.0f}%'.format(max(values)*100),'{:.0f}%'.format(min(values)*100)) city_name='浙江' penetration_map = ( Map(init_opts=opts.InitOpts(width='1200px', height='1000px', bg_color='white')) .add("{}透率分布".format(city_name), [list(z) for z in zip(citys, values)], city_name) .set_series_opts( label_opts=opts.LabelOpts( is_show=True, font_size=15 ) ) .set_global_opts( visualmap_opts=opts.VisualMapOpts( is_show=True, max_=max(values), min_=min(values), is_calculable=False, orient='horizontal', split_number=3, range_color=['#C2D5F8', '#88B0FB', '#4D8AFD'], range_text=['{:.0f}%'.format(max(values)*100),'{:.0f}%'.format(min(values)*100)], pos_left='10%', pos_bottom='15%' ), legend_opts=opts.LegendOpts(is_show=False) ) ) # penetration_map.render() make_snapshot(snapshot, penetration_map.render(), "zj_map.png") print('保存 zj_map.png') return penetration_mapdef create_county_map(city_name): folder_path = os.getcwd() file_name = "白皮书数据地图.xlsx" file_path = os.path.join(folder_path, file_name) dat = get_excel_content(file_path, sheet_name="城市地图") df = dat[['city', 'county', 'penarate']][dat.city == city_name] citys = df['county'].values.tolist() values = df['penarate'].values.tolist() max_insurance = max(values) print(citys) province_penetration_map = ( Map(init_opts=opts.InitOpts(width='1200px', height='1000px', bg_color='white')) .add("{}透率分布".format(city_name), [list(z) for z in zip(citys, values)], reg.sub('',city_name)) .set_series_opts( label_opts=opts.LabelOpts( is_show=True, font_size=15 ) ) .set_global_opts( visualmap_opts=opts.VisualMapOpts( is_show=True, max_=max(values), min_=min(values), is_calculable=False, orient='horizontal', split_number=3, range_color=['#C2D5F8', '#88B0FB', '#4D8AFD'], range_text=['{:.0f}%'.format(max(values) * 100), '{:.0f}%'.format(min(values) * 100)], pos_left='10%', pos_bottom='5%' ), legend_opts=opts.LegendOpts(is_show=False) ) ) # insurance_map.render() make_snapshot(snapshot, province_penetration_map.render(), "city_map_{}.png".format(city_name)) print('保存 city_map_{}.png'.format(city_name)) return province_penetration_mapdef create_funnel_label(): folder_path=os.getcwd() file_name = "白皮书数据地图.xlsx" file_path = os.path.join(folder_path, file_name) dat = get_excel_content(file_path, sheet_name="漏斗图") df = dat[['category', 'cnt']] print(df) category = df['category'].values.tolist() values = df['cnt'].values.tolist() funnel_map = ( Funnel(init_opts=opts.InitOpts(width='1200px', height='1000px', bg_color='white')) .add("漏斗图", [list(z) for z in zip(category, values)]) .set_series_opts( label_opts=opts.LabelOpts( position='inside', font_size=16, ) ) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False) ) ) # insurance_map.render() make_snapshot(snapshot, funnel_map.render(), "funnel.png") print('保存 funnel.png') return funnel_mapcity_list=['温州市','杭州市','绍兴市','嘉兴市','湖州市','宁波市','金华市','台州市','衢州市','丽水市','舟山市']for city_name in city_list: create_county_map(city_name)
版权声明:
本站文章均来自互联网搜集,如有侵犯您的权益,请联系我们删除,谢谢。
标签: #python参考代码