龙空技术网

支持向量机SVM 分类和回归的实例

积极的阳光i 185

前言:

此刻同学们对“支持向量机预测实例”大体比较关心,咱们都需要分析一些“支持向量机预测实例”的相关内容。那么小编同时在网摘上收集了一些有关“支持向量机预测实例””的相关知识,希望大家能喜欢,咱们一起来学习一下吧!

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。这里先不讲解原理,通过两个实例介绍一下SVM在机器学习中的作用和使用方法。

SVM也是一种有监督学习算法,从与标记的训练数据集中建立学习函数,仅需少量训练样本,其函数可以是分类函数(输出是二元的),解决了区分两类由n维向量表示的成员的一般性学习问题;通过引入可选的,经过修改的,包含距离度量的损失函数,SVM也可以被用于回归问题。

分类回归中应用可以用支持向量分类(SVC)支持向量回归(SVR)这两个术语来区分。

1.sklearn SVM的API介绍

在sklearn中SVM的构造函数定义如下,

def __init__(self, *, C=1.0, kernel='rbf', degree=3, gamma='scale',coef0=0.0, shrinking=True, probability=False,tol=1e-3, cache_size=200, class_weight=None,verbose=False, max_iter=-1, decision_function_shape='ovr',break_ties=False,random_state=None):

调用方法,

sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None,random_state=None)

参数说明:

C:C-SVC的惩罚参数C,默认值是1.0。C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。

kernel :核函数,默认是rbf,可以是‘linear’,‘poly’,‘rbf’,‘sigmoid’, ‘precomputed’。

0 – 线性:u'v1 – 多项式:(gamma*u'*v + coef0)^degree2 – RBF函数:exp(-gamma|u-v|^2)3 –sigmoid:tanh(gamma*u'*v + coef0)

degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。

gamma : ‘rbf’,‘poly’ 和‘sigmoid’的核函数参数。默认是’auto’,则会选择1/n_features

coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。

probability :是否采用概率估计?默认为False

shrinking :是否采用shrinking heuristic方法,默认为true

tol :停止训练的误差值大小,默认为1e-3

cache_size :核函数cache缓存大小,默认为200

class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)

verbose :允许冗余输出?

max_iter :最大迭代次数。-1为无限制。

decision_function_shape :‘ovo’, ‘ovr’ or None, default=None3

random_state :数据洗牌时的种子值,int值

主要调节的参数有:C、kernel、degree、gamma、coef0

2实例介绍SVC和SVR的使用方法2.1 SVM实现分类分析-----鸢尾花分类

Scikit-Learn自带鸢尾花数据集,可使用datasets.load_iris()载入。

data——每行是某个鸢尾花的花萼长度、花萼宽度、花瓣长度、花瓣宽度。

target——第n个数据分别表示data段第n行数据所对应的鸢尾花类别编号(共3类)。

备注:本文在最后会给出完整的鸢尾花数据集(共150个样本)的内容,供参考。

首先,使用交叉验证法进行分析。由于交叉验证法每次选取的测试集是随机的,因此每次运算结果未必相同。下面为鸢尾花数据集的SVM聚类训练的源码,并用交叉验证法进行分析。

预测结果:

2.2 SVM实现回归分析-----波士顿房价预测

Scikit-learn自带波士顿房价集,该数据集来源于1978年美国某经济学杂志上,可由datasets.load_boston()载入。该数据集包含若干波士顿房屋的价格及其各项数据,每个数据项包含14个数据,分别是房屋均价及周边犯罪率、是否在河边等相关信息,其中最后一个数据是房屋均价。

这里涉及到了一个数据预处理的步骤——为了便于后续训练,需要对读取到的数据进行处理。因为影响房价的数据的范围都不一致,这些数据都不在一个数量级上,如果直接使用未经预处理的数据进行训练,很容易导致数值大的数据对结果影响极大,从而不能平衡的体现出各个数据的重要性。因此需要对数据进行标准化处理,即通过数学方法,依据方差、平均值等因素,把各类数据放缩到一个相同的范围内,使其影响力所占权重相近。

参考如下实现代码:

预测结果(第1列为实际房价,第2列为预测房价):

附鸢尾花数据集:iris_dataset

5.1,3.5,1.4,0.2,Iris-setosa4.9,3.0,1.4,0.2,Iris-setosa4.7,3.2,1.3,0.2,Iris-setosa4.6,3.1,1.5,0.2,Iris-setosa5.0,3.6,1.4,0.2,Iris-setosa5.4,3.9,1.7,0.4,Iris-setosa4.6,3.4,1.4,0.3,Iris-setosa5.0,3.4,1.5,0.2,Iris-setosa4.4,2.9,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.4,3.7,1.5,0.2,Iris-setosa4.8,3.4,1.6,0.2,Iris-setosa4.8,3.0,1.4,0.1,Iris-setosa4.3,3.0,1.1,0.1,Iris-setosa5.8,4.0,1.2,0.2,Iris-setosa5.7,4.4,1.5,0.4,Iris-setosa5.4,3.9,1.3,0.4,Iris-setosa5.1,3.5,1.4,0.3,Iris-setosa5.7,3.8,1.7,0.3,Iris-setosa5.1,3.8,1.5,0.3,Iris-setosa5.4,3.4,1.7,0.2,Iris-setosa5.1,3.7,1.5,0.4,Iris-setosa4.6,3.6,1.0,0.2,Iris-setosa5.1,3.3,1.7,0.5,Iris-setosa4.8,3.4,1.9,0.2,Iris-setosa5.0,3.0,1.6,0.2,Iris-setosa5.0,3.4,1.6,0.4,Iris-setosa5.2,3.5,1.5,0.2,Iris-setosa5.2,3.4,1.4,0.2,Iris-setosa4.7,3.2,1.6,0.2,Iris-setosa4.8,3.1,1.6,0.2,Iris-setosa5.4,3.4,1.5,0.4,Iris-setosa5.2,4.1,1.5,0.1,Iris-setosa5.5,4.2,1.4,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa5.0,3.2,1.2,0.2,Iris-setosa5.5,3.5,1.3,0.2,Iris-setosa4.9,3.1,1.5,0.1,Iris-setosa4.4,3.0,1.3,0.2,Iris-setosa5.1,3.4,1.5,0.2,Iris-setosa5.0,3.5,1.3,0.3,Iris-setosa4.5,2.3,1.3,0.3,Iris-setosa4.4,3.2,1.3,0.2,Iris-setosa5.0,3.5,1.6,0.6,Iris-setosa5.1,3.8,1.9,0.4,Iris-setosa4.8,3.0,1.4,0.3,Iris-setosa5.1,3.8,1.6,0.2,Iris-setosa4.6,3.2,1.4,0.2,Iris-setosa5.3,3.7,1.5,0.2,Iris-setosa5.0,3.3,1.4,0.2,Iris-setosa7.0,3.2,4.7,1.4,Iris-versicolor6.4,3.2,4.5,1.5,Iris-versicolor6.9,3.1,4.9,1.5,Iris-versicolor5.5,2.3,4.0,1.3,Iris-versicolor6.5,2.8,4.6,1.5,Iris-versicolor5.7,2.8,4.5,1.3,Iris-versicolor6.3,3.3,4.7,1.6,Iris-versicolor4.9,2.4,3.3,1.0,Iris-versicolor6.6,2.9,4.6,1.3,Iris-versicolor5.2,2.7,3.9,1.4,Iris-versicolor5.0,2.0,3.5,1.0,Iris-versicolor5.9,3.0,4.2,1.5,Iris-versicolor6.0,2.2,4.0,1.0,Iris-versicolor6.1,2.9,4.7,1.4,Iris-versicolor5.6,2.9,3.6,1.3,Iris-versicolor6.7,3.1,4.4,1.4,Iris-versicolor5.6,3.0,4.5,1.5,Iris-versicolor5.8,2.7,4.1,1.0,Iris-versicolor6.2,2.2,4.5,1.5,Iris-versicolor5.6,2.5,3.9,1.1,Iris-versicolor5.9,3.2,4.8,1.8,Iris-versicolor6.1,2.8,4.0,1.3,Iris-versicolor6.3,2.5,4.9,1.5,Iris-versicolor6.1,2.8,4.7,1.2,Iris-versicolor6.4,2.9,4.3,1.3,Iris-versicolor6.6,3.0,4.4,1.4,Iris-versicolor6.8,2.8,4.8,1.4,Iris-versicolor6.7,3.0,5.0,1.7,Iris-versicolor6.0,2.9,4.5,1.5,Iris-versicolor5.7,2.6,3.5,1.0,Iris-versicolor5.5,2.4,3.8,1.1,Iris-versicolor5.5,2.4,3.7,1.0,Iris-versicolor5.8,2.7,3.9,1.2,Iris-versicolor6.0,2.7,5.1,1.6,Iris-versicolor5.4,3.0,4.5,1.5,Iris-versicolor6.0,3.4,4.5,1.6,Iris-versicolor6.7,3.1,4.7,1.5,Iris-versicolor6.3,2.3,4.4,1.3,Iris-versicolor5.6,3.0,4.1,1.3,Iris-versicolor5.5,2.5,4.0,1.3,Iris-versicolor5.5,2.6,4.4,1.2,Iris-versicolor6.1,3.0,4.6,1.4,Iris-versicolor5.8,2.6,4.0,1.2,Iris-versicolor5.0,2.3,3.3,1.0,Iris-versicolor5.6,2.7,4.2,1.3,Iris-versicolor5.7,3.0,4.2,1.2,Iris-versicolor5.7,2.9,4.2,1.3,Iris-versicolor6.2,2.9,4.3,1.3,Iris-versicolor5.1,2.5,3.0,1.1,Iris-versicolor5.7,2.8,4.1,1.3,Iris-versicolor6.3,3.3,6.0,2.5,Iris-virginica5.8,2.7,5.1,1.9,Iris-virginica7.1,3.0,5.9,2.1,Iris-virginica6.3,2.9,5.6,1.8,Iris-virginica6.5,3.0,5.8,2.2,Iris-virginica7.6,3.0,6.6,2.1,Iris-virginica4.9,2.5,4.5,1.7,Iris-virginica7.3,2.9,6.3,1.8,Iris-virginica6.7,2.5,5.8,1.8,Iris-virginica7.2,3.6,6.1,2.5,Iris-virginica6.5,3.2,5.1,2.0,Iris-virginica6.4,2.7,5.3,1.9,Iris-virginica6.8,3.0,5.5,2.1,Iris-virginica5.7,2.5,5.0,2.0,Iris-virginica5.8,2.8,5.1,2.4,Iris-virginica6.4,3.2,5.3,2.3,Iris-virginica6.5,3.0,5.5,1.8,Iris-virginica7.7,3.8,6.7,2.2,Iris-virginica7.7,2.6,6.9,2.3,Iris-virginica6.0,2.2,5.0,1.5,Iris-virginica6.9,3.2,5.7,2.3,Iris-virginica5.6,2.8,4.9,2.0,Iris-virginica7.7,2.8,6.7,2.0,Iris-virginica6.3,2.7,4.9,1.8,Iris-virginica6.7,3.3,5.7,2.1,Iris-virginica7.2,3.2,6.0,1.8,Iris-virginica6.2,2.8,4.8,1.8,Iris-virginica6.1,3.0,4.9,1.8,Iris-virginica6.4,2.8,5.6,2.1,Iris-virginica7.2,3.0,5.8,1.6,Iris-virginica7.4,2.8,6.1,1.9,Iris-virginica7.9,3.8,6.4,2.0,Iris-virginica6.4,2.8,5.6,2.2,Iris-virginica6.3,2.8,5.1,1.5,Iris-virginica6.1,2.6,5.6,1.4,Iris-virginica7.7,3.0,6.1,2.3,Iris-virginica6.3,3.4,5.6,2.4,Iris-virginica6.4,3.1,5.5,1.8,Iris-virginica6.0,3.0,4.8,1.8,Iris-virginica6.9,3.1,5.4,2.1,Iris-virginica6.7,3.1,5.6,2.4,Iris-virginica6.9,3.1,5.1,2.3,Iris-virginica5.8,2.7,5.1,1.9,Iris-virginica6.8,3.2,5.9,2.3,Iris-virginica6.7,3.3,5.7,2.5,Iris-virginica6.7,3.0,5.2,2.3,Iris-virginica6.3,2.5,5.0,1.9,Iris-virginica6.5,3.0,5.2,2.0,Iris-virginica6.2,3.4,5.4,2.3,Iris-virginica5.9,3.0,5.1,1.8,Iris-virginica

标签: #支持向量机预测实例 #支持向量机预测实例有哪些内容 #鸢尾花分类模型训练源代码