龙空技术网

[常用工具] OpenCV_contrib库在windows下编译使用指南

彭彭加油鸭 52

前言:

此刻姐妹们对“windows查看opencv安装路径”大体比较讲究,同学们都想要学习一些“windows查看opencv安装路径”的相关内容。那么小编在网络上搜集了一些对于“windows查看opencv安装路径””的相关资讯,希望同学们能喜欢,我们快快来了解一下吧!

本文主要讲述opencv及opencv_contrib库在windows下基于vs2017编译安装指南。所用OpenCV版本为OpenCV4.4,编译平台为vs2017。

文章目录1 下载2 编译与安装2.1 配置OpenCV标准库2.2 配置OpenCV_contrib库2.3 OpenCV需求配置2.3.1 配置优化编译选项2.3.2 去除不必要选项2.4 编译OpenCV2.5 其他平台与语言环境的OpenCV_contrib库使用3 配置与使用3.1 配置3.2 测试4 参考4.1 官方仓库4.2 参考文档1 下载

在OpenCV的github仓库下载对应版本文件。链接地址为:

​​OpenCV仓库​​

在OpenCV_contrib的githuc仓库下载对应版本文件。链接地址为:

​​​OpenCV_contrib仓库​​

注意OpenCV版本和OpenCV_contrib版本必须一致

然后将OpenCV解压后的文件目录opencv-4.4.0放入某个目录下,比如我的放入D盘opencv_440_contrib目录下,然后将OpenCV_contirb解压后的文件夹opencv_contrib-4.4.0放入opencv-4.4.0目录,在opencv-4.4.0目录下建立build目录,用于保存编译文件。具体文件结构如下:

- d:/opencv_440_contrib    - opencv-4.4.0        - ...        - build        - opencv_contrib-4.4.0            - ...

具体目录如图所示:

2 编译与安装2.1 配置OpenCV标准库

打开cmake-gui,配置OpenCV标准库。cmake安装地址为:​​​​

打开后的cmake-gui设置源代码目录地址和生成文件地址,点击configure。如图所示:

然后配置编译器,选择对应其的编译器版本,然后选择编译平台版本。x64 or win32。然后点击finish,cmake将会自动编译文件。

在编译过程会出现如下情况,比如下载ippicv和ffmpeg。有时下载可能会失败。

通用的解决方式是离线下载,然后代替文件。要下载的文件可以打开D:\opencv_440_contrib\opencv-4.4.0.cache目录,查看哪些目录下有大小为0kb的文件,提取该文件的名字,下载对应的文件并改名替换源0kb文件。如下所示:

当然要下载的文件获得主要有三种办法:

搜索引擎搜索文件进行下载替换下载链接,但是可能会失败。具体见windows下OpenCV库安装官方第三方库地址下载(最稳妥)

这里具体讲一讲如何通过官方第三方库下载,首先进入​​opencv_3rdparty仓库​​ 然后搜索对应文件版本下载即可,如图所示:

如果没有找到下载的文件,就打开D:\opencv_440_contrib\opencv-4.4.0\build\CMakeDownloadLog.txt文件,里面有下载文件的具体链接。然后通过第三方工具下载。CMakeDownloadLog.txt内容如下图所示:

当.cache目录无0kb文件,cmake-gui中继续执行configure。执行完之后需要查看底部窗口是否有红色提示。可能会出现OpenCVGenSetupVars.cmake:54,如下图所示:

解决办法为去除OPENCV_GENERATE_SETUPVARS选项,参考​​去除OpenCVGenSetupVars.cmake:54​​如下图所示。然后再继续点击configure。

2.2 配置OpenCV_contrib库

如果上一步骤完成,在cmake搜索框中搜索OPENCV_EXTRA_MODULES_PATH,并将其值设置成opencv_contrib文件夹中的modules,然后再点击configure,如下图所示:

编译过程如出现要下载第三方库,网络问题会失败,如图所示:

编译contrib库需要的第三方库文件具体有:

boostdesc_bgm.iboostdesc_bgm_bi.iboostdesc_bgm_hd.iboostdesc_lbgm.iboostdesc_binboost_064.iboostdesc_binboost_128.iboostdesc_binboost_256.ivgg_generated_120.ivgg_generated_64.ivgg_generated_80.ivgg_generated_48.iface_landmark_model.dat

解决办法就是离线下载这些文件,将这些文件复制到opencv_contrib/modules/xfeatures2d/src/目录下,如下图所示。具体如何下载文件,网络搜索对应文件名或者查看build文件夹下的CMakeDownloadLog.txt文件提取下载链接,或者查看如下查看文章:

​​​​​

然后继续点击configure。可能某些版本还是出现文件下载错误,就把以上文件复制到.cache文件夹,修改名字。类似上一步配置OpenCV标准库一样,就可以配置成功。另外要注意的face_landmark_model.data文件很大约70MB,位于.cache/data目录下,最好离线下载。

检查.cache文件中是否存在0kb文件,安装记录是否报错。如果都正常,至此文件配置基本完成。如下图所示:

点击generate,然后可以跳过2.3节,查看2.4可以直接编译文件,但是建议看看2.3OpenCV需求配置,以加快OpenCV编译速度和提高后期OpenCV使用体验。

2.3 OpenCV需求配置

本节主要是为了加快OpenCV编译速度和提高后期OpenCV使用体验。

2.3.1 配置优化编译选项

首先搜索world,勾选BUILD_opencv_world。BUILD_opencv_world勾选的作用就是生成opencv_world.lib文件,在使用的时候,直接在附加依赖项添加opencv_world.lib就可以,主要是为了方便。没有打包的话,需要添加其它所有的lib文件。如图所示:

然后搜索nonfree,勾选OPENCV_ENABLE_NONFREE,这一项的作用就是使用非免费库。当然也可以不选,一般很少用。如图所示:

然后点击configure生成即可。

2.3.2 去除不必要选项

编译过程中,如果直接进编会译出一堆测试文件(_test_xxx)和性能测试文件(_perf_xxx),以及一些example例子。可以直接去除。

BUILD_EXAMPLESBUILD_TESTSBUILD_PERF_TESTSBUILD_DOCS

Python相关编译可以去除,一般不编译Python库。

BUILD_opencv_python2BUILD_opencv_python3BUILD_opencv_python_bindings_generatorBUILD_opencv_python_tests

不同环境选项可能不同,搜索python即可。然后去除勾选,如下图所示:

此外如果不是编译java库,可以去除java编译选项。

BUILD_javaBUILD_opencv_java_bindings_generator

不同环境选项可能不同,搜索java即可。然后去除勾选,如下图所示:

所有选项配置后,直接configure,查看是否标红而且.cache是否有0kb文件,然后generate,成功后打开OpenProject即可。 如下图所示:

2.4 编译OpenCV

打开后的vs2017界面如下图所示,确定编译平台为debug/x64,

然后点击生成-生成解决方法即可,如下图所示。这样的好处是知道哪些模块生成失败。如果有生成译错误,检查即可。这一过程约10分钟到40分钟,不同机器时间不一样。

生成成功后,如下图所示:

如果生成后没有失败的,选择解决方案-CMakeTargets-INSTALL-仅用于项目-仅生成INSTALL,如下所示。就可以生成opencv_world440d.lib文件。提示成功后就可以在build文件夹下看到install文件夹。

此外以上操作只能生成OpenCV Debug版本。Release版本需要修改配置平台,重复以上操作。如下图所示:

最后如果生成了install文件夹,而且该文件夹下x64/vc15/lib目录下有对应的lib文件表明生成成功。如下图所示。install就是我们编译最后要使用的文件。

2.5 其他平台与语言环境的OpenCV_contrib库使用

如果是Python环境,不需要编译OpenCV contrib库,直接pip安装即可,命令如下:

pip install opencv-contrib-python

如果是linux平台参考如下文章:

3 配置与使用3.1 配置

为了配置好OpenCV,个人习惯将上一步的install文件移到opencv_440_contrib目录下,并且重命名为build(以前使用直装版的习惯)。如图所示:

然后新建vs2017项目,然后选择属性管理器,新建属性列表opencv_440如图所示。这样该opencv_440属性列表以后可以重复导入使用,不需要每次新建工程都配置。

修改Debug|X64模式下的opencv_440属性,修改VC++目录下的可执行目录,包含目录,库目录。如下图所示:

可执行文件目录设置如下,其中vc15指的是编译平台,vc15就是vs2017。按照自己的编译平台选择文件夹。

d:\opencv_440_contrib\build\x64\vc15\bin

包含目录设置如下,添加头文件,但是要注意的是有些OpenCV版本下include目录有opencv目录,需要添加include\opencv目录,该版本只有opencv2目录,就不需要添加opencv目录了。

d:\opencv_440_contrib\build\included:\opencv_440_contrib\build\include\opencv2

库目录设置如下,其中vc15指的是编译平台。

d:\opencv_440_contrib\build\x64\vc15\lib

然后修改链接器-输入-附加依赖项,如下图所示:

附加依赖项设置如下。如果是debug版本就加d,release版本就去掉d。

opencv_world440d.lib
3.2 测试

测试代码如下:

// 生成aruco标志#include "pch.h"#include <opencv2/opencv.hpp>#include <opencv2/aruco.hpp>using namespace cv;// 用于生成aruco图标int main(){  Mat markerImage;  // 生成字典  Ptr<cv::aruco::Dictionary> dictionary = aruco::getPredefinedDictionary(cv::aruco::DICT_6X6_250);  // 生成图像  // 参数分别为字典,第几个标识,图像输出大小为200X200,输出图像,标记边框的宽度  aruco::drawMarker(dictionary, 33, 200, markerImage, 1);  imwrite("marker33.png", markerImage);  return 0;}

该代码主要基于OpenCV中的contrib/aruco模块生成aruco图标,将在运行文件目录下生成名为marker33.png的图片。如下图所示。如果成功生成marker33图片,表明opencv编译成功,能够使用contrib库。

4 参考4.1 官方仓库

​​OpenCV仓库​​

​​OpenCV_contrib仓库​​

​​opencv_3rdparty仓库​​

4.2 参考文档

windows下OpenCV库安装

标签: #windows查看opencv安装路径 #windows查看opencv版本 #vs2017控制台怎么打开