龙空技术网

PHP理论知识之12种排序算法的比较

华哥技术分享 489

前言:

眼前朋友们对“php数组中重复值怎么判断出来”可能比较关注,小伙伴们都想要分析一些“php数组中重复值怎么判断出来”的相关内容。那么小编也在网摘上汇集了一些有关“php数组中重复值怎么判断出来””的相关资讯,希望小伙伴们能喜欢,大家一起来学习一下吧!

常见的排序算法:

快速排序、堆排序、归并排序、选择排序插入排序、二分插入排序冒泡排序、鸡尾酒排序桶排序、计数排序、基数排序、位图排序一、快速排序

通过一趟排序将待排记录分割成独立的A、B两部分,A部分全部小于基准值,B部分全部大于基准值。然后在对两部分做相同的处理,已完成排序的功能。

算法描述与分析

从数列中挑选一个元素,作为基准值, pivot;便利排序数列,比基准值小的放在左边A,大的放在右边B(相同的放在任意一边)。待分组完成后基准值就处于A、B的中间位置。 这个过程称为分区(partition)操作,两种实现方式具体实现见代码递归排序A、B两部分,重复上面1 2两步,进行排序。

复杂度

时间复杂度:

A. o(nlogn)* : 将数组分解为一些列小问题进行独立解决,上述的过程重复logn次得到有序的序列; 每次都需要对n个进行一次处理,所以时间复杂度为 n*logn

B. o(n^2): 固定选择第一个元素做基准值,对倒序数组进行正序排列;每次划分只得到一个比上一次划分少一个记录的子序列,每次只排一个。相当于向后冒泡排序,所以时间复杂度为o(n^2)

空间复杂度:

额外使用的空间需要看具体的代码实现,理论上最优情况下空间复杂度为o(1),只是用一个交换空间; 如果考虑递归的实现逻辑则复杂度为 o(logn) 。

代码实现

教科书式实现:

//普通方法实现function quick_sort( &$arr, $left, $right ){ if( $left < $right){ //取基准值,取最左边的一个元素 $pivot = $arr[$left]; //随机取基准值 - 避免对倒序数组进行正序排序时,时间复杂度 O(n^2)的情况 // $k = rand($left, $right); // swap($arr, $left, $k); // $pivot = $arr[$left]; $i = $left; $j = $right; //一趟排序比较 while($i < $j){ //基准值从左边选取的,所以先从右侧开始比较;反之亦然。(注) while( $arr[$j] >= $pivot && $j > $i){ $j--; } swap($arr, $i, $j); while( $arr[$i] < $pivot && $i < $j ){ $i++; } swap($arr, $i, $j); } quick_sort($arr, $left, $i-1); //对左边内容进行排序 quick_sort($arr, $i+1, $right); //右边内容进行排序 }}$arr = [49, 38, 65, 97, 76, 13, 27, 50];quick_sort($arr, 0, count($arr)-1 );echo implode(',', $arr);

剑指offer的实现:

//分区方法. 这个思想很重要,可以在多个问题中使用。如:取前几名、字符串大小写字母分组等function partition(&$arr, $left, $right){ //随机、取最后一个为基准值,方便从头开始遍历 $k = rand($left, $right); swap($arr, $k, $right); $pivot = $arr[$right];  // 取两个指针A B,从{$left}开始走,B在遇到小于基准值是前走;  // 当A遇到小于基准值时和B处交换值;然后B指针前移一位。  // 完成一遍遍历,B指针的位置就是分割位。在把基准值替换到B+1即可 $b = $left-1; for($a=$left; $a<=$right; $a++){ if( $arr[$a] < $pivot){ $b++; if( $a != $b){ swap($arr, $a, $b); } } } $b++; //指针后移一位,然后替换基准值,保证前面的都小、后面的都大 swap($arr, $b, $right); return $b;}//交换元素。除了这种方式还可以使用:// a=a+b; b=a-b ; a=a-b,加法来实现,不申请额外空间// a=a^b; b = a^b; a = b^a,异或来实现function swap(&$arr, $i, $j){ $t = $arr[$i]; $arr[$i] = $arr[$j]; $arr[$j] = $t;}//排序function quick_sort( &$arr, $left, $right ){ if( $left < $right){ $index = partition($arr, $left, $right); quick_sort($arr, $left, $index-1); quick_sort($arr, $index+1, $right); }}$arr = [49, 38, 65, 97, 76, 13, 27, 50];quick_sort($arr, 0, count($arr)-1 );echo implode(',', $arr);

运行耗时出现两种情况:

A: 13,27,38,49,50,65,76,97[Finished in 0.2s]B: 13,27,38,49,50,65,76,97[Finished in 0.1s]原因:排序使用了随机基准值的方法,所以分区比较、分区大小都是随机的。所以递归次数会有不同,耗时自然也就不同。
二、堆排序

利用堆这种数据结构,堆积生成一个近似完全的二叉树,并且满足堆积性质:即子节点的建值总是小于(或大于)它的父节点。 二叉树使用数组来实现,从头到尾对应堆的从上到下。

示例

最大堆(父节点大于任何一个子节点),则根节点时最大值。将根节点取出来,剩下的进行堆调整生成最大堆;重复上述步骤,直到堆无节点时完成排序。

海量数据TopK问题

用堆排序来解决海量数据TopK 问题会非常好。构建K个节点的最小堆;遍历数据,当数据大于最小根节点时替换根节点,进行堆调整,生成最小堆;遍历结束时,堆会保存其中最大的K个元素; 在进行堆排序,生成K个元素从大到小的排列。

算法描述与分析:

我们这里先介绍几个问题,一步步推到堆排序。

什么是堆

定义上面已有说明,示例如下:

使用数组存储:$arr = [1, 2, 3, 17, 19, 36, 7, 15, 170]

堆调整

为了保证堆的特性而做的一个操作。将该根节点就行下沉操作,一直沉到合适的位置,使得刚才的子树满足堆的性质。

例如对最大堆进行堆调整:

1.对应的数组元素A[i], 左孩子 left(2i+1), 右孩子right(2i+2), 中找最大的那一个,将其下标存入largest中;

2.如果A[i] 是最大的元素,则程序直接结束;

3.否则,i的某个子节点为最大元素,将A[i] 与 A[largest] 交换;

4.在从交换的子子节点开始,重复1,2,3步,直到叶子节点,完成一次堆调整。

建堆

建堆就是一个不断进行堆调整的过程。在数组中,我们一般从第n/2个数开始做堆调整,一直到下标为0的数 (因为下标大于n/2的数,都是叶子节点,无子数,所以其子数已经满足堆的性质了)。

堆调整只判断节点子树,进行该节点下沉操作,并不和父节点进行比较,

所以建堆时必须从后向前进行,首先保证子树满足特性,在一步步往上推。

ps: 数组下标从0开始,建堆节点应从下标 n/2 -1 开始

堆排序

堆排序是在建堆完成之后,进行的操作。

以最大堆为例,堆以数组形式进行存储,所以A[0]是最大值,将A[0]与A[n-1]交换,然后对A[0n-2]进行堆调整。第二次将A[0]与A[n-2]进行交换,A[0n-3]进行堆调整,重复这样的操作直到A[0]与A[1]进行交换。 每次都将最大的数移入后面的区间,故操作完成之后,所得的数组就是从小到大有序排列的了。

堆排序图解

复杂度

时间复杂度:

O(nlogn)* : 建堆过程为O(n), 堆调整过程为O(nlogn)

空间复杂度:

O(1) : 就地排序

代码实现

<?php$arr = [49, 38, 65, 97, 76, 13, 27, 50];sortHeap($arr);function sortHeap(&$arr){ $heap_size = count($arr) - 1; createHeap($arr, $heap_size ); echo '建堆结果:'.implode(',', $arr)."\r\n"; heapPrint($arr, $heap_size); //堆排序 $n = $heap_size; for($i=0; $i<=$n; $i++ ){ swap($arr, 0, $heap_size); //最大值替换到最后面 $heap_size--; adjustHeap($arr, $heap_size, 0); //A[0]替换为新的值,从该节点进行堆调整 } echo '堆排序结果'.implode(',', $arr)."\r\n";}//建堆function createHeap( &$arr, $heap_size){ $n = floor($heap_size/2) -1; for($i=$n; $i>=0; $i-- ){  // 从最后一个非叶子节点开始,下标递减进行建堆。  // 保证节点的子树满足堆的性质,才能进一步对节点的父节点进行堆调整; 否则会有问题 adjustHeap($arr, $heap_size, $i); }}//堆调整 - 最大堆特性function adjustHeap( &$arr, $heap_size, $i){ $left = 2*$i + 1; //左子节点 $right = 2*$i + 2; //右子节点 $largest = $i; //默认最大节点为当前节点 while( $left < $heap_size || $right<$heap_size){ if( $left < $heap_size && $arr[$left] > $arr[$largest] ){ $largest = $left; //左子节点大于目前值最大节点 } if( $right<$heap_size && $arr[$right] > $arr[$largest] ){ $largest = $right; //右子节点大于最大节点 } //子节点大于该节点,需要将该节点下沉,并对下沉后的节点进行子树堆调整 if($largest != $i){ swap($arr, $largest, $i); $i = $largest; $left = 2*$i+1; $right = 2*$i+2; }else{ // 该节点值是最大值时,结束调整。  // 因为:深层次的子树在建堆时已经满足堆性质,不需要再进行判断 break; } }}function swap(&$arr, $i, $j){ $t = $arr[$i]; $arr[$i] = $arr[$j]; $arr[$j] = $t;}//堆打印function heapPrint($arr, $heap_size){ //判断有多少行 $rows = 1; while( pow(2, $rows-1) < $heap_size ){ $rows++;} //最后一行叶子节点的个数,最大个数 $lastNumbers = pow(2, $rows-1); //输出 $row = 1; $num = pow(2, $row-1); for( $i=0; $i<$heap_size; $i++){ $t = $lastNumbers/ ( pow(2, $row-1) +1 ); //空格平均分割。除以(数字个数+1) $t = ceil($t); for($j=0; $j<$t; $j++){ echo " " ; } echo $arr[$i]; if( $i+1 == $num ){ echo "\r\n"; $row++; $num += pow(2, $row-1); } } echo "\r\n";}

运行结果:

建堆结果:97,76,65,38,49,13,27,50 97 76 65 38 49 13 27堆排序结果: 13,27,38,49,50,65,76,97[Finished in 0.2s]
三、归并排序

归并排序是 分治法(Divide and Conquer)的一个非常经典的应用。将大序列拆分成n个小序列,先使小序列有序,然后合并有序子序列,得到排序结果。

将两个有序序列合并成一个序列的方法叫做2路归并。

算法描述与分析:

递归方法实现:

1.Divide: 把长度为n的序列分成长度为 n/2的子序列;

2.Conquer: 对每个子序列采用归并排序;

3.Combine:将排序好的两个子序列合并成最终的排序序列。

归并操作的工作原理如下:

第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

第二步:设定两个指针最初位置分别为两个已经排序序列的起始位置

第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

重复步骤3直到某一指针超出序列尾

将另一序列剩下的所有元素直接复制到合并序列尾。

复杂度:

时间复杂度:

O(nlogn): 将序列分成小序列需要logn步,每一步合并都需要对n个元素进行比较,时间复杂度为O(n),故一共为 o(nlogn)

空间复杂度:

O(n)

代码实现:

function mergeSort($arr){  $len = count($arr); if($len<=1) return $arr; $mid = intval($len/2); $left = array_slice($arr, 0, $mid); $right = array_slice($arr, $mid); $a = mergeSort($left); //拆分排序子序列 $b = mergeSort($right); // $arr = merge($a, $b); //合并,拆分几次,就合并几次 return $arr;}//2路合并function merge($arrA, $arrB){ $arrC = []; while ( count($arrA)>0 && count($arrB)>0 ) { $arrC[] = ($arrA[0] < $arrB[0]) ? array_shift($arrA) : array_shift($arrB); } return array_merge($arrC, $arrA, $arrB);}$arr = [49, 38, 65, 97, 76, 13, 27, 50];$arr = mergeSort($arr);echo implode(',', $arr);

输出结果:13,27,38,49,50,65,76,97[Finished in 0.2s]

四、插入排序

简介:

构建有序序列,对于未排序数据,在已排序序列从后向前扫描,找到合适的位置K并插入。 位置K之后的元素需要全部后移。

算法描述与分析:

取第一个元素构建有序序列;取出下一个元素B,对有序序列从后向前扫描; 如果扫描到的元素大于B,则后移该元素;否则将B插入该元素后面;重复第2步,直到遍历完所有数据。

复杂度:

时间:O(n^2)

空间:O(1)

代码实现:

function insert_sort($arr){ for( $i =1; $i<count($arr); $i++){ $t = $arr[$i]; //待排元素 for($j=$i-1; $j>=0; $j--){ if( $arr[$j] > $t ){ $arr[$j+1] = $arr[$j]; //大于待排元素,则后移 }else{ break; } } $arr[$j+1] = $t; } return $arr;}
五、二分插入排序

原理同上。 只是在第二步寻找合适位置时,使用二分查找法,快速定位插入位置K;然后将K后的元素后移;在K位置插入待排值

复杂度:

同插入排序。

代码实现:

function binary_insertion_sort($arr){ $count = count($arr); for( $i=1; $i<$count; $i++){ $tmp = $arr[$i]; //查找需要替换的位置 $left = 0; $right = $i-1; while( $left <= $right){ $middle = intval( ($right+$left)/2 ); //向上加1 if( $arr[$middle] > $tmp){ $right = $middle-1; }else{ $left = $middle+1; } } //位置后的元素后移 for( $j; $j>=$left; $j--){ $arr[$j+1] = $arr[$j]; } $arr[$left] = $tmp; } echo implode(',', $arr)."\r\n";}
六、选择排序

从待排序列中选择最小(大)的元素,放在序列的起始位置;然后在从剩下的序列中继续选择最小(大)的元素,放在已排序序列的队尾。

复杂度:

时间:O(n^2)

空间:O(1)

七、冒泡排序

两层循环,外层循环次数=元素个数;

内层循环挨个比较,当 A[j] 大于 A[j+1]时交换两个值;

当内循环结束时,最多有n-1次交换,会将最大值置于尾部;

当一次外循环无元素交换时,说明序列已有序,可提前结束外层循环。

复杂度

时间: o(n^2); 最优是已排序列进过一层循环发现无元素交换,直接退出程序,复杂度O(n)。

空间:O(1)

八、鸡尾酒排序

冒泡排序的变种,不同的地方在于从低到高后从高到低。一次层循环内完成一大一小两个元素的冒泡。

function cocktail_sort($arr){ $i=1; $start =0; $len = count($arr)-1; $end = 0; while($i>0){ //有交换元素时继续执行 $i=0; for($j=$start; $j<$len-$end; $j++){ if( $arr[$j] > $arr[$j+1]){ $t = $arr[$j]; $arr[$j] = $arr[$j+1]; $arr[$j+1] = $t; $i=1; } } //逆向冒泡来一次 for($j=$len-$end; $j>$start; $j--){ if( $arr[$j] < $arr[$j-1]){ $t = $arr[$j]; $arr[$j] = $arr[$j-1]; $arr[$j-1] = $t; $i=1; } } $end++; //通过冒泡,尾部有序序列个数加一 $start++; //头部有序序列个数加一 }}
九、桶排序

将数组分别放到有限数量的桶中。每个桶在进行独立的排序。 分桶要求桶中的最大数据小于下一个桶的最小数据。

复杂度

时间:

空间: O(N+M)

十、计数排序

1.找出待排序列的最大值和最小值;使用数组C来标识 C[min] - c[max];

2.统计数组中每个值出现的次数,存入C[i]中;

3.反向填充目标数组:顺序遍历这个数组C,将下标解释成数据, 将该位置的值表示该数据的重复数量,得到排序好的数组。

注:

当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。只能对整数进行排序。

复杂度

时间:O(n)

空间:最大O(2n)

十一、基数排序

将整数按位数切割成不同的数字,然后按每个位数分别比较。

十二、位图排序

要求数据不重复,用bit位进行位图排序,能节省空间。

譬如: 每个学生答题一次,将已答题的学号记录在文件中。学号只出现一次,且学号连续。输入一个学号,查看是否答题。

解决: 将学号进行排序,在查找时使用二分查找。 因为学号不重复,所以可使用位图排序。

复杂度

位图排序不是比较排序,时间复杂度为 O(n)

标签: #php数组中重复值怎么判断出来