龙空技术网

小学常用数学思想

陪孩子一起快乐成长 1043

前言:

此刻各位老铁们对“65等于几乘几填质数”大体比较注重,你们都需要分析一些“65等于几乘几填质数”的相关资讯。那么小编同时在网摘上网罗了一些有关“65等于几乘几填质数””的相关内容,希望咱们能喜欢,姐妹们一起来了解一下吧!

按:在日常数学教育中,我们一般把数学思想与数学方法看成一个整体概念,即数学思想方法。为了更好地理解二者之间的关系,我们分别对此做一详细探讨。

一、 小学数学思想方法的重要性

1.掌握数学思想方法是小学数学教学的新要求

《数学课程标准》(修订稿)在“基本理念”、“总体目标”以及“实施建议”中都涉及有关数学思想方法的内容,对数学思想方法的教学提出了新的要求。总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”如在“基本理念”中指出:“……帮助学生在自主探索与合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。”这里,实际上是在原有“双基”的基础上提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。其中,数学思想方法首次被明确地列入学生的培养目标中。

2. 数学思想和方法是数学的灵魂

知识和技能是数学学习的基础(双基),而数学的思想方法则是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。数学思想方法是蕴含在数学知识形成、发展和应用的过程中,学生只有积极参与教学过程及独立思考,才能逐步感悟数学思想方法。学生学习数学的最终目的,是要运用所学到的数学知识去解决一些实际问题,要解决问题就要有一定的方式、方法、途径和手段,这就是策略。这种策略无不受到数学思想的影响和支配。而学生一旦掌握了解决问题的方式方法,又可以促进数学思想的进一步形成和完善。可见,两者是既有联系又有区别的辩证统一体,数学思想指导着数学方法,数学方法是数学思想的具体表现,二者是相互依存、相互促进的。可以说,数学思想和方法是数学的灵魂,是创造能力的源泉;良好的数学思想和方法,可使学生终生受益。

“数学思想方法大众化,并使其在数学课程设计中充分体现,将是设计21世纪数学课程的突破口”。那么,在小学数学教学中,到底要渗透哪些数学思想和方法呢?

二、 什么是数学思想、什么是数学方法

1.什么是数学思想

数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。

通俗地说,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识。是从某些具体的数学内容和对数学的认识中锻炼上升的数学观点,它在认识活动中被反复运用,带有普遍指导意义,是建立数学和用数学解决问题的指导思想。如字母代数思想、化归思想、极限思想、分类思想等。

2. 什么是数学思想方法

所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。

3.数学思想和数学方法的关系

数学思想是内隐的,而数学方法是外显的,数学思想比数学方法更深刻,更抽象地反映了数学对象间的内在联系。一般来说,前者给出了解决问题的方向,(比如说“购物就去超市”,这是思想),后者给出了解决问题的策略(至于是开车去、还是坐车去,这就是方法)。

但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。

小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教学中,仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使教师讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型” 、“记忆型”的,将完全背离数学教育的目标。因此,我们要转变观念,把数学思想方法作为具体的目标进行教学。数学思想方法是蕴含在数学知识形成、发展和应用的过程中,学生只有积极参与教学过程及独立思考,才能逐步感悟数学思想方法。

三、 常用数学思想

1. 符号化思想

符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、ab=ba公式、s=vt等都是用字母表示数和量的一般规律,而运算的本身就是符号化的语言,所以说符号化思想方法是数学信息的载体,也是人们进行定量分析和系统分析的一种载体。

例:某汽车从甲地到乙地每小时行50千米,返回时每小时行40千米,求汽车往返的平均速度。

从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。

例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;

再如:学校原有7个皮球,又买来4个,学校现在有多少个皮球?要学生填出□ ○ □ = □ (个)。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。

2. 集合思想

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

如用圆圈图(韦恩图)向学生直观的渗透集合概念,让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

例:某班参加校运会,参加田赛的有26人,参加径赛的有30人,其中既参加田赛又参加径赛的有12人,田、径赛项目都没参加的有4人,这个班学生共多少人?

例:求不超过20的正整数中是2的倍数或3的倍数的数的个数。

例:某研究所共有145人,人人都学过至少一门外语;其中学过英语的有90人,学过俄语的有80人,学过日语的有60人;既学过英语又学过俄语的有45人,既学过英语又学过日语的有40人,既学过俄语又学过日语的有30人。问同时学过英、俄、日三门外语的有几人?

3. 对应思想 

对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线(数轴)上的点与表示具体大小的数的一一对应,又如分数应用题中一个具体数量与一个抽象分数(分率)的对应等。对应思想也是解答一般应用题的常见方法。

例:雇工每年工资为12卢布外加一件长袍,当他干了七个月后得到5个卢布和一件长袍,问一件长袍值多少卢布?

小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

如一年级上册教材中,分别将小兔和小鹿、小猴和小熊、小兔和小鸟一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

4. 函数思想

函数思想是一种考虑对应、考虑运动变化、相依关系,以一种状态确定地刻画另一种状态,由研究状态过渡到研究变化过程的思想方法,函数思想的本质在于建立和研究变量之间的对应关系。具体地说,函数思想体现于:

★认识到这个世界是普遍联系的,各个量之间总是有互相依存的关系,即“普遍联系”的观点;

★于“变化”中寻求“规律(关系式)”,即“模式化”思想;

★于“规律”中追求“有序”“结构化”“对称”等思想;

★感悟“变化”有快有慢,有时变化的速度是固定的,有时是变动的;

★根据“规律”判断发展趋势,预测未来,并把握未来,即“预测”的思想。

函数思想的可贵之处正在于它是用运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。函数思想在一年级上册教材中就有渗透,如让学生观察《20以内进位加法表》,发现加数的变化引起和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

5. 数形结合思想

数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题和解决问题,就是数形结合思想。数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

例如,我们常用画线段图的方法来解决问题,这是用图形来代替数量关系的一种方法;我们还可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

例:一块正方形地,如果把它相邻的两条边的长度都增加3米,所得到的新正方形场地比原场地增加了57平方米,求原场地面积。

例:已知甲数的3倍与乙数相等。且乙数比甲数大20,求甲数。

6. 比较思想

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7. 类比思想

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

8. 假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

9. 可逆思想

它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

10. 转化思想

这是解决数学问题的重要策略。是由一种形式变换成另一种形式的思想方法。而其本身的大小是不变的。如几何形体的等积变换、解方程的同解变换、公式的变形等。在计算中也常常用到转化,如甲÷乙(零除外)=甲×乙的倒数,又如除数是小数的除法可以转化成除数是整数的除法来计算。在解应用题时,常常对条件或问题进行转化。通过转化达到化难为易、化新为旧、化繁为简、化整为零、化曲为直等。

例3、一项工程,甲、乙两队合做120天可完成。现在由甲队单独做30天,乙队接着做20天,共完成工程的20%。甲队单独做要几天完成?

例4、下图是由3个长方形拼成的正方形,已知大长方形的宽等于2个小长方形的宽的和,A、B、C分别表示三块阴影部分的面积,且A为6cm2,c为3cm2,求B。

11. 化归思想

化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”(属于策略)。它具有不可逆转的单向性。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想,在教学时也经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

再如,狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4.5 米,黄鼠狼每次跳2.75 米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔12.375 米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离4.5(或2.75)米的整倍数,又是陷阱间隔12.375米的整倍数,也就是4.5和12.375的“ 最小公倍数”(或2.75和12.375的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。

12. 代换思想

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

13. 统计思想

在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法,小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法。

14. 抽象思想

抽象思想是把大量生动的关于现实世界空间形式和数量关系的直观背景材料进行去伪存真,由此及彼,由表及里的加工和制作,提炼数学概念,构造数学模型,建立数学理论。数学抽象表现为借助明确的定义方式去构造产生新的模式的过程,即模式建构过程。

15. 模型思想

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

例:车轮为什么要做成圆形的?

例:用一笔钱购买某种服装,若单买上衣可买10件,单买裤子可买15条。如果用这笔钱购买这种成套服装可买几套? 

16. 运筹思想

对资源进行统筹安排,为决策者进行决策提供最优解决方案,以达到最有效的管理。

17. 分类思想

分类的思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类方法及其分类的标准。分类思想是指当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。如对自然数的分类,若按能否被2整除可分为奇数和偶数,若按约数的个数分则可分为质数、合数和1。又如三角形既可按角分,也可按边分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性。数学知识的分类有助于学生对知识的梳理和建构。

例:把1、2、3……20这二十个自然数分类。

18. 整体思想

对数学问题的观察和分析应从宏观和大处着手,整体把握,化零为整往往不失为一种更便捷更省时的方法。

例:128人进行乒乓球淘汰赛,最后决出冠军。比赛共要进行几场?

例:抗日战争时期军属李奶奶家住着一个八路军伤病员,李奶奶家有20个鸡蛋和一只每天能下一个蛋的母鸡。若伤病员每天吃两个蛋,问最多可连续吃多少天? 例:李师傅喝了一杯酒的一半,然后加满饮料,又喝了一杯的一半,再倒满饮料后又喝了半杯,又加满饮料,最后把一杯都喝了。李师傅喝的酒多还是饮料多?(也可以用抓不变量的方法来解决)

19.  运动的思想 

运动是永恒的,静止是相对的。用运动的、变化的眼光看事物,往往最能把握事物间的本质联系。如几何中的点到线,线到面,面到体,变化的根本原因就在一个“动”字。

例:甲、乙两人同时绕着一座长8米,宽5米的长方形房屋围墙边作同向前进,起初的位置如图,已知甲每秒行3米,乙每秒行2米。问甲何时最早能看到乙?(甲不许回头看)

例:在一只装满水的瓶子里插着一根小棒,当把这根小棒轻轻向上提起4厘米时(小棒仍保持一部分浸没在水中),这时小棒上浸湿部分在水面以上的高度()。 [A、比4厘米短 B、 比4厘米长 C、正好是4厘米]

20. 有序的思想

思维要有序,即要按照一定的顺序,有条理地,全面地观察和思考问题。如果思维无序,观察或思考时杂乱无章,就容易造成思维的重复或遗漏。

例:用5、6、7、8这四个数字中的三个,能组成几个被5整除的三位数? 

21. 变中抓不变的思想

在纷繁复杂的变化中如何把握数量关系,抓“不变量”作为突破口,往往问题就可迎刃而解。

例:科技书和文艺书共630本,其中科技书占20%,后来又买了一些科技书,这时科技书占总数的30%,又买来科技书多少本?

例:甲、乙两班共120人,若甲班调4人到乙班,则两班人数相等,求甲、乙两班原来各几人?

有时同一个数学问题可以用不同的数学思想方法解决,而有时一个数学问题的解决却必须同时用到几种不同的数学思想方法。如以上例,就可以应用变中抓不变、倒推、转化、数学模型等多种思想方法解答。

22. 极限思想方法

极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节, 事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。这个变化过程中存在一个“关节点”,在小学数学讲述圆的周长、面积知识时,就以“极限”为“关节点”。“化曲为直”地从有限中认识无限,从近似中认识精确,从量变中认识质变。

教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会直线的两端是可以无限延长的。

例:不计算直接比较63×66与64×65的大小。

例:想一想:如何将长方形、正方形、平行四边形、梯形及三角形的面积计算用一个统一的公式来表达? 

23. 推理思想

标签: #65等于几乘几填质数