龙空技术网

混合云 K8s 容器化应用弹性伸缩实战

阿里云云栖号 843

前言:

现时姐妹们对“使用阿里云弹性伸缩来实现计算资源的弹性配置”大致比较珍视,小伙伴们都需要分析一些“使用阿里云弹性伸缩来实现计算资源的弹性配置”的相关文章。那么小编同时在网摘上网罗了一些有关“使用阿里云弹性伸缩来实现计算资源的弹性配置””的相关资讯,希望大家能喜欢,姐妹们一起来学习一下吧!

1. 前提条件

本最佳实践的软件环境要求如下:

应用环境:

①容器服务ACK基于专有云V3.10.0版本。

②公共云云企业网服务CEN。

③公共云弹性伸缩组服务ESS。

配置条件:

1)使用专有云的容器服务或者在ECS上手动部署敏捷PaaS。

2)开通云专线,打通容器服务所在VPC与公共云上的VPC。

3)开通公共云弹性伸缩组服务(ESS)。

2. 背景信息

本实践基于K8s的业务集群运行在专有云上,对测试业务进行压力测试,主要基于以下三种产品和能力:

①利用阿里云的云企业网专线打通专有云和公共云,实现两朵云上VPC网络互通。

②利用K8s(Kubernetes)的HPA能力,实现容器的水平伸缩。

③利用K8s的Cluster Autoscaler和阿里云弹性伸缩组ESS能力实现节点的自动伸缩。

HPA(Horizontal Pod Autoscaler)是K8s的一种资源对象,能够根据CPU、内存等指标对statefulset、deployment等对象中的pod数量进行动态伸缩,使运行在上面的服务对指标的变化有一定的自适应能力。

当被测试业务指标达到上限时,触发HPA自动扩容业务pod;当业务集群无法承载更多pod时,触发公共云的ESS服务,在公共云内扩容出ECS并自动添加到专有云的K8s集群。

图 1:架构原理图

3. 配置HPA

本示例创建了一个支持HPA的nginx应用,创建成功后,当Pod的利用率超过本例中设置的20%利用率时,则会进行水平扩容,低于20%的时候会进行缩容。

1.若使用自建K8s集群,则通过yaml文件配置HPA

1)创建一个nginx应用,必须为应用设置request值,否则HPA不会生效。

apiVersion:app/v1beta2kind: Deploymentspec:  template:    metadata:      creationTimestamp: null      labels:        app: hpa-test    spec:        dnsPolicy: ClusterFirst             terminationGracePeriodSeconds:30                 containers:        image: '192.168.**.***:5000/admin/hpa-example:v1'        imagePullPolicy: IfNotPresent        terminationMessagePolicy:File        terminationMessagePath:/dev/termination-log        name: hpa-test        resources:          requests:            cpu: //必须设置request值        securityContext: {}        restartPolicy:Always        schedulerName:default-scheduler  replicas: 1  selector:     matchLabels:        app: hpa-test  revisionHistoryLimit: 10  strategy:     type: RollingUpdate    rollingUpdate:        maxSurge: 25%        maxUnavailable: 25%     progressDeadlineSeconds: 600

2)创建HPA。

apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata: annotations:    autoscaling.alpha.kubernetes.io/conditions:'[{"type":"AbleToScale","status":"True","lastTransitionTime":"2020-04-29T06:57:28Z","reason":"ScaleDownStabilized","message":"recent    recommendations were higher than current one, applying the highest recent    recommendation"},{"type":"ScalingActive","status":"True","lastTransitionTime":"2020-04-29T06:57:28Z","reason":"ValidMetricFound","message":"theHPA    was able to successfully calculate a replica count from cpu resource    utilization(percentage of    request)"},{"type":"ScalingLimited","status":"False","lastTransitionTime":"2020-04-29T06:57:28Z","reason":"DesiredWithinRange","message":"thedesired    count is within the acceptable range"}]'    autoscaling.alpha.kubernetes.io/currentmetrics:'[{"type":"Resource","resource":{"name":"cpu","currentAverageUtilization":0,"currentAverageValue":"0"}}]'creationTimestamp: 2020-04-29T06:57:13Zname: hpa-testnamespace: defaultresourceVersion: "3092268"selfLink:/apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/hpa01uid: a770ca26-89e6-11ea-a7d7-00163e0106e9spec:    maxReplicas: //设置pod数量     minReplicas: 1    scaleTargetRef:       apiVersion: apps/v1beta2       kind: Deployment       name: centos             targetCPUUtilizationPercentage://设置CPU阈值

2.若使用阿里云容器服务,需要在部署应用时选择配置HPA

图2:访问设置

4. 配置Cluster Autoscaler

资源请求(Request)的正确、合理设置,是弹性伸缩的前提条件。节点自动伸缩组件基于K8s资源调度的分配情况进行伸缩判断,节点中资源的分配通过资源请(Request)进行计算。

当Pod由于资源请求(Request)无法满足并进入等待(Pending)状态时,节点自动伸缩组件会根据弹性伸缩组配置信息中的资源规格以及约束配置,计算所需的节点数目。

如果可以满足伸缩条件,则会触发伸缩组的节点加入。而当一个节点在弹性伸缩组中且节点上Pod的资源请求低于阈值时,节点自动伸缩组件会将节点进行缩容。

1.配置弹性伸缩组ESS

1)创建ESS弹性伸缩组,记录最小实例数和最大实例数。

图3:修改伸缩组

2)创建伸缩配置,记录伸缩配置的id。

图4:伸缩配置

#!/bin/shyum install -y ntpdate && ntpdate -u ntp1.aliyun.com && curl http:// example.com/public/hybrid/attach_local_node_aliyun.sh | bash -s -- --docker-version 17.06.2-ce-3 --token9s92co.y2gkocbumal4fz1z --endpoint 192.168.**.***:6443 --cluster-dns 10.254.**.**--region cn-huhehaoteecho "{" > /etc/docker/daemon.jsonecho "\"registry-mirrors\": [" >>/etc/docker/daemon.jsonecho "\"\"" >> /etc/docker/daemon.jsonecho "]," >> /etc/docker/daemon.jsonecho "\"insecure-registries\": [\".**.***:5000\"]" >> /etc/docker/daemon.jsonecho "}" >> /etc/docker/daemon.jsonsystemctl restart docker 

2.K8s集群部署autoscaler

kubectl apply -f ca.yml

参考ca.yml创建autoscaler,注意修改如下配置与实际环境相对应。

access-key-id: "TFRBSWlCSFJyeHd2QXZ6****"access-key-secret: "bGIyQ3NuejFQOWM0WjFUNjR4WTVQZzVPRXND****"region-id: "Y24taHVoZWhh****"

ca.yal代码如下:

---apiVersion: v1kind: ServiceAccountmetadata:  labels:    k8s-addon: cluster-autoscaler.addons.k8s.io    k8s-app: cluster-autoscaler  name: cluster-autoscaler  namespace: kube-system---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRolemetadata:  name: cluster-autoscaler  labels:    k8s-addon: cluster-autoscaler.addons.k8s.io    k8s-app: cluster-autoscalerrules:- apiGroups: [""]  resources: ["events","endpoints"]  verbs: ["create", "patch"]- apiGroups: [""]  resources: ["pods/eviction"]  verbs: ["create"]- apiGroups: [""]  resources: ["pods/status"]  verbs: ["update"]- apiGroups: [""]  resources: ["endpoints"]  resourceNames: ["cluster-autoscaler"]  verbs: ["get","update"]- apiGroups: [""]  resources: ["nodes"]  verbs: ["watch","list","get","update"]- apiGroups: [""]  resources: ["pods","services","replicationcontrollers","persistentvolumeclaims","persistentvolumes"]  verbs: ["watch","list","get"]- apiGroups: ["extensions"]  resources: ["replicasets","daemonsets"]  verbs: ["watch","list","get"]- apiGroups: ["policy"]  resources: ["poddisruptionbudgets"]  verbs: ["watch","list"]- apiGroups: ["apps"]  resources: ["statefulsets"]  verbs: ["watch","list","get"]- apiGroups: ["storage.k8s.io"]  resources: ["storageclasses"]  verbs: ["watch","list","get"]---apiVersion: rbac.authorization.k8s.io/v1kind: Rolemetadata:  name: cluster-autoscaler  namespace: kube-system  labels:    k8s-addon: cluster-autoscaler.addons.k8s.io    k8s-app: cluster-autoscalerrules:- apiGroups: [""]  resources: ["configmaps"]  verbs: ["create","list","watch"]- apiGroups: [""]  resources: ["configmaps"]  resourceNames: ["cluster-autoscaler-status", "cluster-autoscaler-priority-expander"]  verbs: ["delete","get","update","watch"]---apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata:  name: cluster-autoscaler  labels:    k8s-addon: cluster-autoscaler.addons.k8s.io    k8s-app: cluster-autoscalerroleRef:  apiGroup: rbac.authorization.k8s.io  kind: ClusterRole  name: cluster-autoscalersubjects:  - kind: ServiceAccount    name: cluster-autoscaler    namespace: kube-system---apiVersion: rbac.authorization.k8s.io/v1kind: RoleBindingmetadata:  name: cluster-autoscaler  namespace: kube-system  labels:    k8s-addon: cluster-autoscaler.addons.k8s.io    k8s-app: cluster-autoscalerroleRef:  apiGroup: rbac.authorization.k8s.io  kind: Role  name: cluster-autoscalersubjects:  - kind: ServiceAccount    name: cluster-autoscaler    namespace: kube-system---apiVersion: v1kind: Secretmetadata:  name: cloud-config  namespace: kube-systemtype: Opaquedata:  access-key-id: "TFRBSWlCSFJyeHd2********"  access-key-secret: "bGIyQ3NuejFQOWM0WjFUNjR4WTVQZzVP*********"  region-id: "Y24taHVoZW********"---apiVersion: apps/v1kind: Deploymentmetadata:  name: cluster-autoscaler  namespace: kube-system  labels:    app: cluster-autoscalerspec:  replicas: 1  selector:    matchLabels:      app: cluster-autoscaler  template:    metadata:      labels:        app: cluster-autoscaler    spec:      dnsConfig:        nameservers:          - 100.XXX.XXX.XXX          - 100.XXX.XXX.XXX      nodeSelector:        ca-key: ca-value      priorityClassName: system-cluster-critical      serviceAccountName: admin      containers:        - image: 192.XXX.XXX.XXX:XX/admin/autoscaler:v1.3.1-7369cf1          name: cluster-autoscaler          resources:            limits:              cpu: 100m              memory: 300Mi            requests:              cpu: 100m              memory: 300Mi          command:            - ./cluster-autoscaler            - '--v=5'            - '--stderrthreshold=info'            - '--cloud-provider=alicloud'            - '--scan-interval=30s'            - '--scale-down-delay-after-add=8m'            - '--scale-down-delay-after-failure=1m'            - '--scale-down-unready-time=1m'            - '--ok-total-unready-count=1000'            - '--max-empty-bulk-delete=50'            - '--expander=least-waste'            - '--leader-elect=false'            - '--scale-down-unneeded-time=8m'            - '--scale-down-utilization-threshold=0.2'            - '--scale-down-gpu-utilization-threshold=0.3'            - '--skip-nodes-with-local-storage=false'            - '--nodes=0:5:asg-hp3fbu2zeu9bg3clraqj'          imagePullPolicy: "Always"          env:            - name: ACCESS_KEY_ID              valueFrom:                secretKeyRef:                  name: cloud-config                  key: access-key-id            - name: ACCESS_KEY_SECRET              valueFrom:                secretKeyRef:                  name: cloud-config                  key: access-key-secret            - name: REGION_ID              valueFrom:                secretKeyRef:                  name: cloud-config                  key: region-id
5. 执行结果

模拟业务访问:

启动busybox镜像,在pod内执行如下命令访问以上应用的service,可以同时启动多个pod增加业务负载。while true;do wget -q -O- ;done

观察HPA:

加压前

图 5:加压前

加压后

当CPU值达到阈值后,会触发pod的水平扩容。

图 6:加压后1

图 7:加压后2

观察Pod:

当集群资源不足时,新扩容出的pod处于pending状态,此时将触发cluster autoscaler,自动扩容节点。

图8:伸缩活动

本文为阿里云原创内容,未经允许不得转载。

标签: #使用阿里云弹性伸缩来实现计算资源的弹性配置 #阿里云弹性伸缩规则 #阿里云ecs弹性伸缩方案