前言:
现时兄弟们对“apache视频优化”大体比较关怀,小伙伴们都需要学习一些“apache视频优化”的相关知识。那么小编也在网上搜集了一些关于“apache视频优化””的相关资讯,希望姐妹们能喜欢,各位老铁们一起来学习一下吧!章飞 字节跳动技术团队 2023-06-02 12:02 发表于北京
背景
在Android上,Java/Kotlin代码会编译为DEX字节码,在运行期由虚拟机解释执行。但是,字节码解释执行的速度比较慢。所以,通常虚拟机会在解释模式基础上做一些必要的优化。
在Android 5,Google采用的策略是在应用安装期间对APP的全量DEX进行AOT优化。AOT优化(Ahead of time),就是在APP运行前就把DEX字节码编译成本地机器码。虽然运行效率相比DEX解释执行有了大幅提高,但由于是全量AOT,就会导致用户需要等待较长的时间才能打开应用,对于磁盘空间的占用也急剧增大。
于是,为了避免过早的资源占用,从Android 7开始便不再进行全量AOT,而是JIT+AOT的混合编译模式。JIT(Just in time),就是即时优化,也就是在APP运行过程中,实时地把DEX字节码编译成本地机器码。具体方式是,在APP运行时分析运行过的热代码,然后在设备空闲时触发AOT,在下次运行前预编译热代码,提升后续APP运行效率。
但是热代码代码收集需要比较长周期,在APP升级覆盖安装之后,原有的预编译的热代码失效,需要再走一遍运行时分析、空闲时AOT的流程。在单周迭代的研发模式下问题尤为明显。
因此,从Android 9 开始,Google推出了Cloud Profiles技术。它的原理是,在部分先安装APK的用户手机上,Google Play Store收集到热点代码,然后上传到云端并聚合。这样,对于后面安装的用户,Play Store会下发热点代码配置进行预编译,这些用户就不需要进行运行时分析,大大提前了优化时机。不过,这个收集聚合下发过程需要几天时间,大部分用户还是没法享受到这个优化。
最终,在2022年Google推出了 Baseline Profiles ()技术。它允许开发者内置自己定义的热点代码配置文件。在APP安装期间,系统提前预编译热点代码,大幅提升APP运行效率。
不过,Google官方的Baseline Profiles存在以下局限性:
Baseline Profile 需要使用 AGP 7 及以上的版本,公司内各大APP的版本都还比较低,短期内并不可用安装时优化依赖Google Play,国内无法使用
为此,我们开发了一套定制化的Baseline Profiles优化方案,可以适用于全版本AGP。同时通过与国内主流厂商合作,推进支持了安装时优化生效。
方案探索与实现
我们先来看一下官方Baseline Profile安装时优化的流程:
这里面主要包含3个步骤:
热点方法收集,通过本地运行设备或者人工配置,得到可读格式的基准配置文本文件(baseline-prof.txt)编译期处理,将基准配置文本文件转换成二进制文件,打包至apk内(baseline.prof和baseline.profm),另外Google Play服务端还会将云端profile与baseline.prof聚合处理。安装时,系统会解析apk内的baseline.prof二进制文件,根据版本号,做一些转换后,提前预编译指定的热点代码为机器码。热点方法收集
官方文档()提到使用Jetpack Macrobenchmark库() 和 BaselineProfileRule自动收集热点方法。通过在Android Studio中引入Benchmark module,需要编写相应的Rule触发打包、测试等流程。
从下面源码可以看到,最终是通过profman命令可以收集到app运行过程中的热点方法。
private fun profmanGetProfileRules(apkPath: String, pathOptions: List<String>): String { // When compiling with CompilationMode.SpeedProfile, ART stores the profile in one of // 2 locations. The `ref` profile path, or the `current` path. // The `current` path is eventually merged into the `ref` path after background dexopt. val profiles = pathOptions.mapNotNull { currentPath -> Log.d(TAG, "Using profile location: $currentPath") val profile = Shell.executeScriptCaptureStdout( "profman --dump-classes-and-methods --profile-file=$currentPath --apk=$apkPath" ) profile.ifBlank { null } } ... return builder.toString()}
所以,我们可以绕过Macrobenchmark库,直接使用profman命令,减少自动化接入成本。具体命令如下:
adb shell profman --dump-classes-and-methods \--profile-file=/data/misc/profiles/cur/0/com.ss.android.article.video/primary.prof \--apk=/data/app/com.ss.android.article.video-Ctzj32dufeuXB8KOhAqdGg==/base.apk \> baseline-prof.txt
生成的baseline-prof.txt文件内容如下:
PLcom/bytedance/apm/perf/b/f;->a(Lcom/bytedance/apm/perf/b/f;)Ljava/lang/String;PLcom/bytedance/bdp/bdpbase/ipc/n$a;->a()Lcom/bytedance/bdp/bdpbase/ipc/n;HSPLorg/android/spdy/SoInstallMgrSdk;->initSo(Ljava/lang/String;I)ZHSPLorg/android/spdy/SpdyAgent;->InvlidCharJudge([B[B)VLanet/channel/e/a$b;Lcom/bytedance/alliance/services/impl/c;...
这些规则采用两种形式,分别指明方法和类。方法的规则如下所示:
[FLAGS][CLASS_DESCRIPTOR]->[METHOD_SIGNATURE]
FLAGS表示 H、S 和 P 中的一个或多个字符,用于指示相应方法在启动类型方面应标记为 Hot、Startup 还是 Post Startup:
带有 H 标记表示相应方法是一种“热”方法,这意味着相应方法在应用的整个生命周期内会被调用多次。带有 S 标记表示相应方法在启动时被调用。带有 P 标记表示相应方法是与启动无关的热方法。
类的规则,则是直接指明类签名即可:
[CLASS_DESCRIPTOR]
不过这里是可读的文本格式,后续还需要进一步转为二进制才可以被系统识别。
另外,release包导出的是混淆后的符号,需要根据mapping文件再做一次反混淆才能使用。
编译期处理
在得到base.apk的基准配置文本文件(baseline-prof.txt)之后还不够,一些库里面
(比如androidx的库里)
也会自带baseline-prof.txt文件。所以,我们还需要把这些子library内附带的baseline-prof.txt取出来,与base.apk的配置一起合并成完整的基准配置文本文件。
接下来,我们需要把完整的配置文件转换成baseline.prof二进制文件。具体是由AGP 7.x内的 CompileArtProfileTask.kt 实现的 :
/** * Task that transforms a human readable art profile into a binary form version that can be shipped * inside an APK or a Bundle. */abstract class CompileArtProfileTask: NonIncrementalTask() {... abstract class CompileArtProfileWorkAction: ProfileAwareWorkAction<CompileArtProfileWorkAction.Parameters>() { override fun run() { val diagnostics = Diagnostics { error -> throw RuntimeException("Error parsing baseline-prof.txt : $error") } val humanReadableProfile = HumanReadableProfile( parameters.mergedArtProfile.get().asFile, diagnostics ) ?: throw RuntimeException( "Merged ${SdkConstants.FN_ART_PROFILE} cannot be parsed successfully." ) val supplier = DexFileNameSupplier() val artProfile = ArtProfile( humanReadableProfile, if (parameters.obfuscationMappingFile.isPresent) { ObfuscationMap(parameters.obfuscationMappingFile.get().asFile) } else { ObfuscationMap.Empty }, //need to rename dex files with sequential numbers the same way [DexIncrementalRenameManager] does parameters.dexFolders.asFileTree.files.sortedWith(DexFileComparator()).map { DexFile(it.inputStream(), supplier.get()) } ) // the P compiler is always used, the server side will transcode if necessary. parameters.binaryArtProfileOutputFile.get().asFile.outputStream().use { artProfile.save(it, ArtProfileSerializer.V0_1_0_P) } // create the metadata. parameters.binaryArtProfileMetadataOutputFile.get().asFile.outputStream().use { artProfile.save(it, ArtProfileSerializer.METADATA_0_0_2) } } }
这里的核心逻辑就是做了以下3件事:
读取baseline-prof.txt基准配置文本文件,下文用HumanReadableProfile表示将HumanReadableProfile、proguard mapping文件、dex文件作为输入传给ArtProfile由ArtProfile生成特定版本格式的baseline.prof二进制文件
ArtProfile类是在profgen子工程内实现的,其中有两个关键的方法:
构造方法:读取HumanReadableProfile、proguard mapping文件、dex文件作为参数,构造ArtProfile实例save()方法:输出指定版本格式的baseline.prof二进制文件
参考链接:
至此,我们可以基于profgen开发一个gradle plugin,在编译构建流程中插入一个自定义task,将baseline-prof.txt转换成baseline.prof,并内置到apk的asset目录。
核心代码如下:
val packageAndroidTask = variant.variantScope.taskContainer.packageAndroidTask?.get()packageAndroidTask?.doFirst { var dexFiles = collectDexFiles(variant.packageApplication.dexFolders) dexFiles = dexFiles.sortedWith(DexFileComparator()) //基准配置文件的内存表示 var hrp = HumanReadableProfile("baseline-prof.txt") var obfFile: File? = getObfFile(variant, proguardTask) val apk = Apk(dexFiles, "") val obf = if (obfFile != null) ObfuscationMap(obfFile) else ObfuscationMap.Empty val profile = ArtProfile(hrp!!, obf, apk) val dexoptDir = File(variant.mergedAssets.first(), profDir) if (!dexoptDir.exists()) { dexoptDir.mkdirs() } val outFile = File(dexoptDir, "baseline.prof") val metaFile = File(dexoptDir, "baseline.profm") profile.save(outFile.outputStream(), ArtProfileSerializer.V0_1_0_P) profile.save(metaFile.outputStream(), ArtProfileSerializer.METADATA_0_0_2) }
自定义task主要包含以下几个步骤:
解压apk获取dex列表,按照一定规则排序(跟Android的打包规则有关,dex文件名和crc等信息需要和prof二进制文件内的对应上)通过ObfuscationMap将baseline-prof.txt文件中的符号转换成混淆后的符号通过ArtProfile按照一定格式转换成baseline.prof与baseline.profm二进制文件
其中有两个文件:
baseline.prof:包含热点方法id、类id信息的二进制编码文件baseline.profm:用于高版本转码的二进制扩展文件
关于baseline.prof的格式,我们从ArtProfileSerializer.kt的注释可以看到不同Android版本有不同的格式。Android 12 开始需要另外转码才能兼容,详见可以看这个issue:
参考链接:
安装期处理
在生成带有baseline.prof二进制文件的APK之后,再来看一下系统在安装apk时如何处理这个baseline.prof文件(基于Android 13源码分析)。本地测试通过adb install-multiple release.apk release.dm命令执行安装,然后通过Android系统包管理子系统进行安装时优化。
Android系统包管理框架分为3层:
应用层:应用通过getPackageManager获取PMS的实例,用于应用的安装,卸载,更新等操作PMS服务层:拥有系统权限,解析并记录应用的基本信息(应用名称,数据存放路径、关系管理等),最终通过binder系统层的installd系统服务进行通讯Installd系统服务层:拥有root权限,完成最终的apk安装、dex优化
其中处理baseline.prof二进制文件并最终指导编译生成odex的主要路径如下:
InstallPackageHelper.java#installPackagesLI InstallPackageHelper.java#executePostCommitSteps ArtManagerService.java#prepareAppProfiles Installer.java#prepareAppProfile InstalldNativeService.cpp#prepareAppProfile dexopt.cpp#prepare_app_profile ProfileAssistant.cpp#ProcessProfilesInternal PackageDexOptimizer.java#performDexOpt PackageDexOptimizer.java#performDexOptLI PackageDexOptimizer.java#dexOptPath InstalldNativeService.cpp#dexopt dexopt.cpp#dexopt dex2oat.cc
在入口installPackagesLI函数中,经过prepare、scan、Reconcile、Commit 四个阶段后最终调用executePostCommitSteps完成apk安装、prof文件写入、dexopt优化:
private void installPackagesLI(List<InstallRequest> requests) { //阶段1:prepare prepareResult = preparePackageLI(request.mArgs, request.mInstallResult); //阶段2:scan final ScanResult result = scanPackageTracedLI( prepareResult.mPackageToScan, prepareResult.mParseFlags, prepareResult.mScanFlags, System.currentTimeMillis(), request.mArgs.mUser, request.mArgs.mAbiOverride); //阶段3:Reconcile reconciledPackages = ReconcilePackageUtils.reconcilePackages( reconcileRequest, mSharedLibraries, mPm.mSettings.getKeySetManagerService(), mPm.mSettings); //阶段4:Commit并安装 commitRequest = new CommitRequest(reconciledPackages, mPm.mUserManager.getUserIds()); executePostCommitSteps(commitRequest); }
executePostCommitSteps中,主要完成prof文件写入与dex优化:
private void executePostCommitSteps(CommitRequest commitRequest) { for (ReconciledPackage reconciledPkg : commitRequest.mReconciledPackages.values()) { final AndroidPackage pkg = reconciledPkg.mPkgSetting.getPkg(); final String packageName = pkg.getPackageName(); final String codePath = pkg.getPath(); //步骤1:prof文件写入 // Prepare the application profiles for the new code paths. // This needs to be done before invoking dexopt so that any install-time profile // can be used for optimizations. mArtManagerService.prepareAppProfiles(pkg, mPm.resolveUserIds(reconciledPkg.mInstallArgs.mUser.getIdentifier()), /* updateReferenceProfileContent= */ true); //步骤2:dex优化,在开启baseline profile优化之后compilation-reason=install-dm final int compilationReason = mDexManager.getCompilationReasonForInstallScenario( reconciledPkg.mInstallArgs.mInstallScenario); DexoptOptions dexoptOptions = new DexoptOptions(packageName, compilationReason, dexoptFlags); if (performDexopt) { // Compile the layout resources. if (SystemProperties.getBoolean(PRECOMPILE_LAYOUTS, false)) { mViewCompiler.compileLayouts(pkg); } ScanResult result = reconciledPkg.mScanResult; mPackageDexOptimizer.performDexOpt(pkg, realPkgSetting, null /* instructionSets */, mPm.getOrCreateCompilerPackageStats(pkg), mDexManager.getPackageUseInfoOrDefault(packageName), dexoptOptions); } // Notify BackgroundDexOptService that the package has been changed. // If this is an update of a package which used to fail to compile, // BackgroundDexOptService will remove it from its denylist. BackgroundDexOptService.getService().notifyPackageChanged(packageName); notifyPackageChangeObserversOnUpdate(reconciledPkg); } PackageManagerServiceUtils.waitForNativeBinariesExtractionForIncremental( incrementalStorages); }prof文件写入
先来看下prof文件写入流程,主要流程如下图所示:
其入口在ArtManagerService.java``#``prepareAppProfiles:
/** * Prepare the application profiles. * - create the current primary profile to save time at app startup time. * - copy the profiles from the associated dex metadata file to the reference profile. */ public void prepareAppProfiles( AndroidPackage pkg, @UserIdInt int user, boolean updateReferenceProfileContent) { try { ArrayMap<String, String> codePathsProfileNames = getPackageProfileNames(pkg); for (int i = codePathsProfileNames.size() - 1; i >= 0; i--) { String codePath = codePathsProfileNames.keyAt(i); String profileName = codePathsProfileNames.valueAt(i); String dexMetadataPath = null; // Passing the dex metadata file to the prepare method will update the reference // profile content. As such, we look for the dex metadata file only if we need to // perform an update. if (updateReferenceProfileContent) { File dexMetadata = DexMetadataHelper.findDexMetadataForFile(new File(codePath)); dexMetadataPath = dexMetadata == null ? null : dexMetadata.getAbsolutePath(); } synchronized (mInstaller) { boolean result = mInstaller.prepareAppProfile(pkg.getPackageName(), user, appId, profileName, codePath, dexMetadataPath); } } } catch (InstallerException e) { } }
其中dexMetadata是后缀为.dm的压缩文件,内部包含primary.prof、primary.profm文件,apk的baseline.prof、baseline.profm会在安装阶段转为成dm文件。
mInstaller.prepareAppProfile最终会调用到dexopt.cpp#prepare_app_profile中,通过fork一个子进程执行profman二进制程序,将dm文件、reference_profile文件(位于设备上固定路径,存储汇总的热点方法)、apk文件作为参数输入:
//frameworks/native/cmds/installd/dexopt.cppbool prepare_app_profile(const std::string& package_name, userid_t user_id, appid_t app_id, const std::string& profile_name, const std::string& code_path, const std::optional<std::string>& dex_metadata) { // We have a dex metdata. Merge the profile into the reference profile. unique_fd ref_profile_fd = open_reference_profile(multiuser_get_uid(user_id, app_id), package_name, profile_name, /*read_write*/ true, /*is_secondary_dex*/ false); unique_fd dex_metadata_fd(TEMP_FAILURE_RETRY( open(dex_metadata->c_str(), O_RDONLY | O_NOFOLLOW))); unique_fd apk_fd(TEMP_FAILURE_RETRY(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW))); RunProfman args; args.SetupCopyAndUpdate(dex_metadata_fd, ref_profile_fd, apk_fd, code_path); pid_t pid = fork(); if (pid == 0) { args.Exec(); } return true;} void SetupCopyAndUpdate(const unique_fd& profile_fd, const unique_fd& reference_profile_fd, const unique_fd& apk_fd, const std::string& dex_location) { SetupArgs(...); } void SetupArgs(const std::vector<T>& profile_fds, const unique_fd& reference_profile_fd, const std::vector<U>& apk_fds, const std::vector<std::string>& dex_locations, bool copy_and_update, bool for_snapshot, bool for_boot_image) { const char* profman_bin = select_execution_binary("/profman"); if (reference_profile_fd != -1) { AddArg("--reference-profile-file-fd=" + std::to_string(reference_profile_fd.get())); } for (const T& fd : profile_fds) { AddArg("--profile-file-fd=" + std::to_string(fd.get())); } for (const U& fd : apk_fds) { AddArg("--apk-fd=" + std::to_string(fd.get())); } for (const std::string& dex_location : dex_locations) { AddArg("--dex-location=" + dex_location); } ...}
实际上,就是执行了下面的profman命令:
./profman --reference-profile-file-fd=9 \--profile-file-fd=10 --apk-fd=11 \--dex-location=/data/app/com.ss.android.article.video-4-JZaMrtO7n_kFe4kbhBBA==/base.apk \--copy-and-update-profile-key
reference-profile-file-fd指向/data/misc/profile/ref/$package/primary.prof文件,记录当前apk版本的热点方法,最终baseline.prof保存的热点方法信息需要写入到reference-profile文件。
profman二进制程序的代码如下:
class ProfMan final { public: void ParseArgs(int argc, char **argv) { MemMap::Init(); for (int i = 0; i < argc; ++i) { if (StartsWith(option, "--profile-file=")) { profile_files_.push_back(std::string(option.substr(strlen("--profile-file=")))); } else if (StartsWith(option, "--profile-file-fd=")) { ParseFdForCollection(raw_option, "--profile-file-fd=", &profile_files_fd_); } else if (StartsWith(option, "--dex-location=")) { dex_locations_.push_back(std::string(option.substr(strlen("--dex-location=")))); } else if (StartsWith(option, "--apk-fd=")) { ParseFdForCollection(raw_option, "--apk-fd=", &apks_fd_); } else if (StartsWith(option, "--apk=")) { apk_files_.push_back(std::string(option.substr(strlen("--apk=")))); } ... } static int profman(int argc, char** argv) { ProfMan profman; // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. profman.ParseArgs(argc, argv); // Initialize MemMap for ZipArchive::OpenFromFd. MemMap::Init(); ... // Process profile information and assess if we need to do a profile guided compilation. // This operation involves I/O. return profman.ProcessProfiles(); }
可以看到最后一行调用到profman的ProcessProfiles方法,它里面调用了ProfileAssistant.cpp#ProcessProfilesInternal[;l=30?q=ProcessProfilesInternal],核心代码如下:
ProfmanResult::ProcessingResult ProfileAssistant::ProcessProfilesInternal( const std::vector<ScopedFlock>& profile_files, const ScopedFlock& reference_profile_file, const ProfileCompilationInfo::ProfileLoadFilterFn& filter_fn, const Options& options) { ProfileCompilationInfo info(options.IsBootImageMerge()); //步骤1:Load the reference profile. if (!info.Load(reference_profile_file->Fd(), true, filter_fn)) { return ProfmanResult::kErrorBadProfiles; } // Store the current state of the reference profile before merging with the current profiles. uint32_t number_of_methods = info.GetNumberOfMethods(); uint32_t number_of_classes = info.GetNumberOfResolvedClasses(); //步骤2:Merge all current profiles. for (size_t i = 0; i < profile_files.size(); i++) { ProfileCompilationInfo cur_info(options.IsBootImageMerge()); if (!cur_info.Load(profile_files[i]->Fd(), /*merge_classes=*/ true, filter_fn)) { return ProfmanResult::kErrorBadProfiles; } if (!info.MergeWith(cur_info)) { return ProfmanResult::kErrorBadProfiles; } } // 如果新增方法/类没有达到阈值,则跳过 if (((info.GetNumberOfMethods() - number_of_methods) < min_change_in_methods_for_compilation) && ((info.GetNumberOfResolvedClasses() - number_of_classes) < min_change_in_classes_for_compilation)) { return kSkipCompilation; } ... //步骤3:We were successful in merging all profile information. Update the reference profile. ... if (!info.Save(reference_profile_file->Fd())) { return ProfmanResult::kErrorIO; } return options.IsForceMerge() ? ProfmanResult::kSuccess : ProfmanResult::kCompile;}
这里首先通过ProfileCompilationInfo的load方法,读取reference_profile二进制文件序列化加载到内存。再调用MergeWith方法将cur_profile二进制文件(也就是apk内的baseline.prof)合并到reference_profile文件中,最后调用Save方法保存。
再来看下ProfileCompilationInfo的类结构,可以发现与前面编译期处理提到的ArtProfile序列化格式是一致的。
参考链接:
//art/libprofile/profile/profile_compilation_info.h/** * Profile information in a format suitable to be queried by the compiler and * performing profile guided compilation. * It is a serialize-friendly format based on information collected by the * interpreter (ProfileInfo). * Currently it stores only the hot compiled methods. */class ProfileCompilationInfo { public: static const uint8_t kProfileMagic[]; static const uint8_t kProfileVersion[]; static const uint8_t kProfileVersionForBootImage[]; static const char kDexMetadataProfileEntry[]; static constexpr size_t kProfileVersionSize = 4; static constexpr uint8_t kIndividualInlineCacheSize = 5; ... }dex优化
分析完prof二进制文件处理流程之后,接着再来看dex优化部分。主要流程如下图所示:
dex优化的入口函数PackageDexOptimizer.java#performDexOptLI,跟踪代码可以发现最终是通过调用dex2oat二进制程序:
//dexopt.cppint dexopt(const char* dex_path, uid_t uid, const char* pkgname, const char* instruction_set, int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter, const char* volume_uuid, const char* class_loader_context, const char* se_info, bool downgrade, int target_sdk_version, const char* profile_name, const char* dex_metadata_path, const char* compilation_reason, std::string* error_msg, /* out */ bool* completed) { ... RunDex2Oat runner(dex2oat_bin, execv_helper.get()); runner.Initialize(...); bool cancelled = false; pid_t pid = dexopt_status_->check_cancellation_and_fork(&cancelled); if (cancelled) { *completed = false; return 0; } if (pid == 0) { //设置schedpolicy,设置为后台线程 SetDex2OatScheduling(boot_complete); //执行dex2oat命令 runner.Exec(DexoptReturnCodes::kDex2oatExec); } else { //父进程等待dex2oat子进程执行完,超时时间9.5分钟. int res = wait_child_with_timeout(pid, kLongTimeoutMs); if (res == 0) { LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' (success) ---"; } else { //dex2oat执行失败 } } // dex2oat ran successfully, so profile is safe to keep. reference_profile.DisableCleanup(); return 0;}
实际上是执行了如下命令:
/apex/com.android.runtime/bin/dex2oat \--input-vdex-fd=-1 --output-vdex-fd=11 \--resolve-startup-const-strings=true \--max-image-block-size=524288 --compiler-filter=speed-profile --profile-file-fd=14 \--classpath-dir=/data/app/com.ss.android.article.video-4-JZaMrtO7n_kFe4kbhBBA== \--class-loader-context=PCL[]{PCL[/system/framework/org.apache.http.legacy.jar]} \--generate-mini-debug-info --compact-dex-level=none --dm-fd=15 \--compilation-reason=install-dm
常规安装时不会带上dm-fd和install-dm参数,所以不会触发baseline profile相关优化。
dex2oat用于将dex字节码编译成本地机器码,相关的编译流程如下代码:
static dex2oat::ReturnCode Dex2oat(int argc, char** argv) { TimingLogger timings("compiler", false, false); // 解析参数 dex2oat->ParseArgs(argc, argv); art::MemMap::Init(); // 加载profile热点方法文件 if (dex2oat->HasProfileInput()) { if (!dex2oat->LoadProfile()) { return dex2oat::ReturnCode::kOther; } } //打开输入文件 dex2oat->OpenFile(); //准备de2oat环境,包括启动runtime、加载boot class path dex2oat::ReturnCode setup_code = dex2oat->Setup(); //检查profile热点方法是否被加载到内存,并做crc校验 if (dex2oat->DoProfileGuidedOptimizations()) { //校验profile_compilation_info_中dex的crc与apk中dex的crc是否一致 dex2oat->VerifyProfileData(); } ... //正式开始编译 dex2oat::ReturnCode result = DoCompilation(*dex2oat); ... return result;}
这个流程包含:
解析命令行传入的参数调用LoadProfile()加载profile热点方法文件,保存到profile_compilation_info_成员变量中准备dex2oat环境,包括启动unstarted runtime、加载boot class pathprofile相关校验,主要检查profile_compilation_info_中的dex的crc与apk中dex的crc是否一致,方法数是否一致调用DoCompilation正式开始编译
LoadProfile方法加载profile热点方法文件如下代码:
bool LoadProfile() { //初始化profile热点方法的内存对象:profile_compilation_info_ profile_compilation_info_.reset(new ProfileCompilationInfo()); //读取reference profile文件列表 // Dex2oat only uses the reference profile and that is not updated concurrently by the app or // other processes. So we don't need to lock (as we have to do in profman or when writing the // profile info). std::vector<std::unique_ptr<File>> profile_files; if (!profile_file_fds_.empty()) { for (int fd : profile_file_fds_) { profile_files.push_back(std::make_unique<File>(DupCloexec(fd))); } } ... //依次加载到profile_compilation_info_中 for (const std::unique_ptr<File>& profile_file : profile_files) { if (!profile_compilation_info_->Load(profile_file->Fd())) { return false; } } return true; }
LoadProfile方法,将之前生成的profile文件加载到内存,保存到profile_compilation_info_变量中。
接着调用Compile方法完成odex文件的编译生成,如下代码:
// Set up and create the compiler driver and then invoke it to compile all the dex files. jobject Compile() REQUIRES(!Locks::mutator_lock_) { ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); TimingLogger::ScopedTiming t("dex2oat Compile", timings_); ... compiler_options_->profile_compilation_info_ = profile_compilation_info_.get(); driver_.reset(new CompilerDriver(compiler_options_.get(), verification_results_.get(), compiler_kind_, thread_count_, swap_fd_)); driver_->PrepareDexFilesForOatFile(timings_); return CompileDexFiles(dex_files); }
profile_compilation_info_作为参数传给了CompilerDriver,在之后的编译过程中将用来判断是否编译某个方法和机器码重排。
CompilerDriver::Compile方法开始编译dex字节码,代码如下:
void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files, TimingLogger* timings) { for (const DexFile* dex_file : dex_files) { CompileDexFile(this,class_loader,*dex_file,dex_files, "Compile Dex File Quick",CompileMethodQuick); }}static void CompileMethodQuick(...) { auto quick_fn = [profile_index](...) { CompiledMethod* compiled_method = nullptr; if ((access_flags & kAccNative) != 0) { //jni方法编译... } else if ((access_flags & kAccAbstract) != 0) { // Abstract methods don't have code. } else if (annotations::MethodIsNeverCompile(dex_file, dex_file.GetClassDef(class_def_idx), method_idx)) { // Method is annotated with @NeverCompile and should not be compiled. } else { const CompilerOptions& compiler_options = driver->GetCompilerOptions(); const VerificationResults* results = driver->GetVerificationResults(); MethodReference method_ref(&dex_file, method_idx); // Don't compile class initializers unless kEverything. bool compile = (compiler_options.GetCompilerFilter() == CompilerFilter::kEverything) || ((access_flags & kAccConstructor) == 0) || ((access_flags & kAccStatic) == 0); // Check if it's an uncompilable method found by the verifier. compile = compile && !results->IsUncompilableMethod(method_ref); // Check if we should compile based on the profile. compile = compile && ShouldCompileBasedOnProfile(compiler_options, profile_index, method_ref); if (compile) { compiled_method = driver->GetCompiler()->Compile(...); } } return compiled_method; }; CompileMethodHarness(self,driver,code_item,access_flags, invoke_type,class_def_idx,class_loader, dex_file,dex_cache,quick_fn);}
在CompileMethodQuick方法中可以看到针对不同的方法(jni方法、虚方法、构造函数等)有不同的处理方式,常规方法会通过ShouldCompileBasedOnProfile来判断某个method是否需要被编译。
具体判断条件如下:
// Checks whether profile guided compilation is enabled and if the method should be compiled// according to the profile file.static bool ShouldCompileBasedOnProfile(const CompilerOptions& compiler_options, ProfileCompilationInfo::ProfileIndexType profile_index, MethodReference method_ref) { if (profile_index == ProfileCompilationInfo::MaxProfileIndex()) { // No profile for this dex file. Check if we're actually compiling based on a profile. if (!CompilerFilter::DependsOnProfile(compiler_options.GetCompilerFilter())) { return true; } // Profile-based compilation without profile for this dex file. Do not compile the method. return false; } else { const ProfileCompilationInfo* profile_compilation_info = compiler_options.GetProfileCompilationInfo(); // Compile only hot methods, it is the profile saver's job to decide // what startup methods to mark as hot. bool result = profile_compilation_info->IsHotMethod(profile_index, method_ref.index); if (kDebugProfileGuidedCompilation) { LOG(INFO) << "[ProfileGuidedCompilation] " << (result ? "Compiled" : "Skipped") << " method:" << method_ref.PrettyMethod(true); } return result; }}
可以看到是依据profile_compilation_info_是否命中hotmethod来判断。我们把编译日志打开,可以看到具体哪些方法被编译,哪些方法被跳过,如下图所示,这与我们配置的profile是一致的。
机器码生成的实现在CodeGenerator类中,代码如下,具体细节将不再展开。
//art/compiler/optimizing/code_generator.ccvoid CodeGenerator::Compile(CodeAllocator* allocator) { InitializeCodeGenerationData(); HGraphVisitor* instruction_visitor = GetInstructionVisitor(); GetStackMapStream()->BeginMethod(...); size_t frame_start = GetAssembler()->CodeSize(); GenerateFrameEntry(); if (disasm_info_ != nullptr) { disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize()); } for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) { HBasicBlock* block = (*block_order_)[current_block_index_]; Bind(block); MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc()); for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); DisassemblyScope disassembly_scope(current, *this); current->Accept(instruction_visitor); } } GenerateSlowPaths(); if (graph_->HasTryCatch()) { RecordCatchBlockInfo(); } // Finalize instructions in assember; Finalize(allocator); GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());}
另外,profile_compilation_info_也会影响机器码重排,我们知道系统在通过IO加载文件的时候,一般都是按页维度来加载的(一般等于4KB),热点代码重排在一起,可以减少IO读取的次数,从而提升性能。
odex文件的机器码布局部分由OatWriter类实现,声明代码如下:
class OatWriter { public: OatWriter(const CompilerOptions& compiler_options, const VerificationResults* verification_results, TimingLogger* timings, ProfileCompilationInfo* info, CompactDexLevel compact_dex_level); ... // Profile info used to generate new layout of files. ProfileCompilationInfo* profile_compilation_info_; // Compact dex level that is generated. CompactDexLevel compact_dex_level_; using OrderedMethodList = std::vector<OrderedMethodData>; ...
从中可以看到profile_compilation_info_会被OatWriter类用到,用于生成odex机器码的布局。
具体代码如下:
// Visit every compiled method in order to determine its order within the OAT file.// Methods from the same class do not need to be adjacent in the OAT code.class OatWriter::LayoutCodeMethodVisitor final : public OatDexMethodVisitor { public: LayoutCodeMethodVisitor(OatWriter* writer, size_t offset) : OatDexMethodVisitor(writer, offset), profile_index_(ProfileCompilationInfo::MaxProfileIndex()), profile_index_dex_file_(nullptr) { } bool StartClass(const DexFile* dex_file, size_t class_def_index) final { // Update the cached `profile_index_` if needed. This happens only once per dex file // because we visit all classes in a dex file together, so mark that as `UNLIKELY`. if (UNLIKELY(dex_file != profile_index_dex_file_)) { if (writer_->profile_compilation_info_ != nullptr) { profile_index_ = writer_->profile_compilation_info_->FindDexFile(*dex_file); } profile_index_dex_file_ = dex_file; } return OatDexMethodVisitor::StartClass(dex_file, class_def_index); } bool VisitMethod(size_t class_def_method_index, const ClassAccessor::Method& method){ OatClass* oat_class = &writer_->oat_classes_[oat_class_index_]; CompiledMethod* compiled_method = oat_class->GetCompiledMethod(class_def_method_index); if (HasCompiledCode(compiled_method)) { // Determine the `hotness_bits`, used to determine relative order // for OAT code layout when determining binning. uint32_t method_index = method.GetIndex(); MethodReference method_ref(dex_file_, method_index); uint32_t hotness_bits = 0u; if (profile_index_ != ProfileCompilationInfo::MaxProfileIndex()) { ProfileCompilationInfo* pci = writer_->profile_compilation_info_; // Note: Bin-to-bin order does not matter. If the kernel does or does not read-ahead // any memory, it only goes into the buffer cache and does not grow the PSS until the // first time that memory is referenced in the process. hotness_bits = (pci->IsHotMethod(profile_index_, method_index) ? kHotBit : 0u) | (pci->IsStartupMethod(profile_index_, method_index) ? kStartupBit : 0u) } } OrderedMethodData method_data = {hotness_bits,oat_class,compiled_method,method_ref,...}; ordered_methods_.push_back(method_data); } return true; }
在LayoutCodeMethodVisitor类中,根据profile_compilation_info_指定的热点方法的FLAG,判断是否打开hotness_bits标志位。热点方法会一起被重排在odex文件靠前的位置。
小结一下,在系统安装app阶段,会读取apk中baselineprofile文件,经过porfman根据当前系统版本做一定转换并序列化到本地的reference_profile路径下,再通过dexoat编译热点方法为本地机器码并通过代码重排提升性能。
厂商合作
Baseline Profile安装时优化需要Google Play支持,但国内手机由于没有Google Play,无法在安装期做实现优化效果。为此,我们协同抖音与小米、华为等主流厂商建立了合作,共同推进Baseline Profile安装时优化在国内环境的落地。具体的合作方式是:
我们通过编译期改造,提供带Baseline Profile的APK给到厂商验证联调。厂商具体的优化策略会综合考量安装时长、dex2oat消耗资源情况而定,比如先用默认策略安装apk,再后台异步执行Baseline Profile编译。最后通过Google提供的初步显示所用时间 (TTID) 来验证优化效果(TTID指标用于测量应用生成第一帧所用的时间,包括进程初始化、activity 创建以及显示第一帧。)
参考链接
在与厂商联调的过程中,我们解决了各种问题,其中包括有一个资源压缩方式错误。具体错误信息如下:
java.io.FileNotFoundException: This file can not be opened as a file descriptor; it is probably compressed
原来安卓系统要求apk内的baseline.prof二进制是不压缩格式的。我们可以用unzip -v来检验文件是否未被压缩,Defl标志表示压缩,Stored标志表示未压缩。
我们可以在打包流程中指定其为STORED格式,即不压缩。
private void writeNoCompress(@NonNull JarEntry entry, @NonNull InputStream from) throws IOException { byte[] bytes = new byte[from.available()]; from.read(bytes); entry.setMethod(JarEntry.STORED); entry.setSize(bytes.length); CRC32 crc32 = new CRC32(); crc32.update(bytes,0,bytes.length); entry.setCrc(crc32.getValue()); setEntryAttributes(entry); jarOutputStream.putNextEntry(entry); jarOutputStream.write(bytes, 0, bytes.length); jarOutputStream.closeEntry();}
改完之后我们再检查一下文件是否被压缩。
baseline.prof二进制是不压缩对包体积影响比较小,因为这个文件大部分都是int类型的methodid。经测试,7万+热点方法文件,生成baseline.prof二进制文件62KB,压缩率只有0.1%;如果通过通配符配置,压缩率在5%左右。
一般应用商店下载安装包时在网络传输过程中做了(压缩)处理,这种情况不压缩处理基本不影响包大小,同时不压缩处理也能避免解压缩带来的耗时。
优化效果
在自测中,我们可以通过下面的方式通过install-multiple命令安装APK。
# Unzip the Release APK firstunzip release.apk# Create a ZIP archivecp assets/dexopt/baseline.prof primary.profcp assets/dexopt/baseline.profm primary.profm# Create an archivezip -r release.dm primary.prof primary.profm# Install APK + Profile togetheradb install-multiple release.apk release.dm
在厂商测试中通过下面的命令测试冷启动耗时
PACKAGE_NAME=com.ss.android.article.videoadb shell am start-activity -W -n $PACKAGE_NAME/.SplashActivity | grep "TotalTime"
冷启动Activity耗时比较未优化已优化优化率荣耀Android11950ms884ms6.9%小米Android13821ms720ms12.3%
可以看到,在开启Baseline Profile优化之后,首装冷启动(TTID)耗时减少约10%左右,为新用户的启动速度体验带来了极大的提升。
参考文章Android 端内数据状态同步方案VM-Mapping开源 | Scene:Android 开源页面导航和组合框架团队介绍
我们是字节跳动西瓜视频客户端团队,专注于西瓜视频 App 的开发和基础技术建设,在客户端架构、性能、稳定性、编译构建、研发工具等方向都有投入。如果你也想一起攻克技术难题,迎接更大的技术挑战,欢迎点击阅读原文,或者投递简历到xiaolin.gan@bytedance.com。
最 Nice 的工作氛围和成长机会,福利与机遇多多,在北上杭三地均有职位,欢迎加入西瓜视频客户端团队 !
标签: #apache视频优化