龙空技术网

Hbase 和 MySQL 的区别是什么?一文深度对比

jeesite 280

前言:

今天各位老铁们对“mysql和hbase应用场景对比”大约比较关切,兄弟们都想要分析一些“mysql和hbase应用场景对比”的相关资讯。那么小编在网摘上网罗了一些有关“mysql和hbase应用场景对比””的相关知识,希望各位老铁们能喜欢,小伙伴们快快来了解一下吧!

MySQL + HBase是我们日常应用中常用的两个数据库,分别解决应用的在线事务问题和大数据场景的海量存储问题。

从架构对比看差异

相比MySQL,HBase的架构特点:

完全分布式(数据分片、故障自恢复)底层使用HDFS(存储计算分离)。

由架构看到的能力差异:

MySQL:运维简单(组件少)、延时低(访问路径短)HBase:扩展性好、内置容错恢复与数据冗余

推荐下自己做的 Spring Boot 的实战项目:

从引擎结构看差异

相比MySQL,HBase的内部引擎特点:

HBase原生没有SQL引擎(无法使用sQL访问,使用APlI),云HBase增强版(Lindorm)及开源Phoenix均提供sQL能力HBase使用LSM(Log-Structure Merge)树,Innodb使用B+树。

由引擎结构(B+Tree vs LSM Tree)看到的能力差异:

MySQL:读写均衡、存在空间碎片HBase:侧重于写、存储紧凑无浪费、Io放大、数据导入能力强

推荐下自己做的 Spring Cloud 的实战项目:

关于LSM树和B+树的理解

目的是为了减少磁盘IO,

索引:某种数据结构,方便查找数据

hash索引不利于范围查询,使用树结构

B+树从磁盘读数据是以页为单位,根据这个特点使用平衡多路查找树B+树的非叶子节点存放索引,叶子节点存放数据非叶子节点能够存放更多的索引,树的高度更低叶子节点通过指针相连,有利于区间查询叶子节点和根节点的距离基本相同,查找的效率稳定数据插入导致叶子节点分裂,最终导致逻辑连续的数据存放到不同物理磁盘块位置,导致区间查询效率下降LSM TreeLSM(Log-Structured Merge),LevelDB,RocksDB,HBase,Cassandra等都是基于LSM结构HDD,SSD顺序读写的速度都高于随机读写,写入日志就是顺序写WAL,memtable,sstable有利于写,不利于读,先从memtable查找,再到磁盘所有的sstable文件查找Compaction的目的是减少sstable文件数量,缓解读放大的问题,加速查找可以对sstable文件使用布隆过滤器Compaction策略STCS(SIze-Tiered Compaction Strategy)空间放大和读放大问题LCS(Leveled Compaction Strategy)写放大问题Compaction会引入写放大问题,在Value较大时采用KV分离存储缓解写放大写操作多于读操作时,LSM树有更好的性能,因为随着insert操作,为了维护B+树结构,节点分裂。读磁盘的随机读写概率会变大,性能会逐渐减弱。LSM树相比于B+树,多次单页随机写变成一次多页随机写,复用了磁盘寻道时间,极大提高写性能。不过付出代价就是放弃部分读性能。数据访问

相同之处:数据以表的模型进行逻辑组织,应用对数据进行增删改查

不同之处:MySQL的SQL功能更丰富:事务能力更强,HBase既可以用APIl进行更灵活、性能更好的访问,也可以借助Phoenix使用标准sQL访问;只支持单行事务。

HBase的特色功能--TTL

HBase的特色功能—多版本

HBase的特色功能—多列簇

HBase的特色功能—MOB

从生态看差异

MySQL:满足APP的在线数据库存储,一般有我足矣

大数据圈:应用于大数据场景的存储、计算及管理组件

MySQL:一般可独立满足在线应用的数据存储需求,或者与少量组件配合(如缓存、分库中间件)HBase:一般需要和较多大数据组件一起配合完成应用场景,场景架构的设计、实施存在较大的挑战总结

哪些场景的存储适合HBase ?

HBase不是MySQL的替换,HBase是业务规模及场景扩张后,对MySQL的自然延伸

标签: #mysql和hbase应用场景对比 #hbase和mysql性能对比表