前言:
此时小伙伴们对“基于python网络爬虫天气”大概比较珍视,咱们都想要了解一些“基于python网络爬虫天气”的相关文章。那么小编同时在网络上网罗了一些有关“基于python网络爬虫天气””的相关内容,希望我们能喜欢,各位老铁们一起来了解一下吧!获取数据并写入xls文件
import csvimport randomimport requestsfrom lxml import etree# 城市列表如下:# 目前支持北京、天津、重庆三个城市7天天气预报# 支持河南天气更新# 18点后获取天气预报将get_text()方法中的0改为1headers = [ "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153 " "Safari/537.36", "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 " "Safari/537.75.14", "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0)", 'Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1.11) Gecko/20071127 Firefox/2.0.0.11', 'Opera/9.25 (Windows NT 5.1; U; en)', 'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)', 'Mozilla/5.0 (compatible; Konqueror/3.5; Linux) KHTML/3.5.5 (like Gecko) (Kubuntu)', 'Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.12) Gecko/20070731 Ubuntu/dapper-security Firefox/1.5.0.12', 'Lynx/2.8.5rel.1 libwww-FM/2.14 SSL-MM/1.4.1 GNUTLS/1.2.9', "Mozilla/5.0 (X11; Linux i686) AppleWebKit/535.7 (KHTML, like Gecko) Ubuntu/11.04 Chromium/16.0.912.77 " "Chrome/16.0.912.77 Safari/535.7", "Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:10.0) Gecko/20100101 Firefox/10.0 "]def get_province(): url = '; r = requests.get(url, headers={'User-Agent': headers[random.randint(1, 11)]}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) data = html1.xpath('/html/body/div[2]/div[2]/ul/li/a') list_province = [] for i in data: item = {'省辖市': i.text, '链接': i.get('href')} list_province.append(item) return list_provincedef get_city_link(ul, ulink, list_weather): ul = ul ulink = ulink if ul in list_weather: url = ulink r = requests.get(url, headers={'User-Agent': headers[random.randint(1, 11)]}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) return html1 else: passdef get_special(ulink): url = ulink r = requests.get(url, headers={'User-Agent': headers[random.randint(1, 11)]}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) return html1def get_city(list_): # 上海天气10月23日网页改版 list_all = ['北京', '天津', '重庆'] list_null = ['山西', '湖北', '青海'] # 安徽 # 完整url # /html/body/div[1]/div[3]/div/span/a[1] # 广东 # /html/body/div[2]/ul/li[6]/a # 广西 # /html/body/div[1]/div[1]/div[2]/div/span/a[4] # 黑龙江 # /html/body/div[3]/div/a[4] list_special_city = ['台湾', '香港', '澳门', '河北'] list_http = ['河南', '山东', '陕西', '江苏', '湖南', '福建', '海南', '云南', '四川', '西藏', '江西', '新疆', '甘肃', '宁夏', '内蒙古', '吉林', '辽宁'] list_city = [] for i in list_: ul = i['省辖市'] ulink = i['链接'] if ul in list_all: html = get_city_link(ul, ulink, list_all) data = html.xpath('/html[1]/body[1]/div[1]/div[2]/div[1]/span[1]/a') for i in data: item = {'市,区': i.text, '链接': i.get('href')} list_city.append(item) if ul in list_http: html1 = get_city_link(ul, ulink, list_http) data1 = html1.xpath('/html/body/div[1]/div[2]/div/span/a') for i in data1: item = {'市,区': i.text, '链接': (ulink + i.get('href'))} list_city.append(item) if ul in list_null: html2 = get_city_link(ul, ulink, list_null) data2 = html2.xpath('/html/body/div[2]/div[2]/div/span/a') for i in data2: item = {'市,区': i.text, '链接': (ulink + i.get('href'))} list_city.append(item) if ul in list_special_city: pass if ul == '安徽': html = get_special(' ;) data = html.xpath('/html/body/div[1]/div[3]/div/span/a') for i in data: item = {'市,区': i.text, '链接': i.get('href')} list_city.append(item) if ul == '广东': html = get_special(ulink) data = html.xpath(' /html/body/div[2]/ul/li[6]/a') for i in data: item = {'市,区': i.text, '链接': (ulink + i.get('href'))} list_city.append(item) if ul == '广西': html = get_special(ulink) data = html.xpath('/html/body/div[1]/div[1]/div[2]/div/span/a') for i in data: item = {'市,区': i.text, '链接': (ulink + i.get('href'))} list_city.append(item) if ul == '黑龙江': html = get_special(ulink) data = html.xpath('/html/body/div[3]/div/a') for i in data: item = {'市,区': i.text, '链接': (ulink + i.get('href'))} list_city.append(item) return list_city# 北京、天津、重庆def get_weather(): # 风向仅供参考 All_url = get_city(get_province()) list_weather = [] for i in All_url: url = i['链接'] name = i['市,区'] r = requests.get(url, headers={'User-Agent': headers[random.randint(1, 11)]}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) data_time = html1.xpath('//div[@class="con today clearfix"]//ul[@class="t clearfix"]//li//h1') data_weather = html1.xpath('//div[@class="con today clearfix"]//ul[@class="t clearfix"]//li//p[@class="wea"]') data_temperature = html1.xpath( '//div[@class="con today clearfix"]//ul[@class="t clearfix"]//li//p[@class="tem"]//i') data_wind_level = html1.xpath( '//div[@class="con today clearfix"]//ul[@class="t clearfix"]//li//p[@class="win"]//i') data_wind = html1.xpath( '//div[@class="con today clearfix"]//ul[@class="t clearfix"]//li//p[@class="win"]//em//span') for i in range(0, len(data_time)): Item = {'城市': name, '时间': data_time[i].text, '天气': data_weather[i].text, '温度': data_temperature[i].text, '风力': data_wind_level[i].text, '风向': data_wind[i].get('title')} list_weather.append(Item) csv_File = open("D:\\beijing_tianjin_chongqing_weather.csv", 'w', newline='') try: writer = csv.writer(csv_File) writer.writerow(('城市', '时间', '天气', '实时温度', '风力', '风向')) for i in list_weather: writer.writerow((i['城市'], i['时间'], i['天气'], i['温度'], i['风力'], i['风向'])) finally: csv_File.close() print('北京,重庆,天津天气获取成功')def get_henan(): All_url = get_city(get_province()) list_henan = ['郑州', '安阳', '濮阳', '鹤壁', '焦作', '济源', '新乡', '三门峡', '洛阳', '平顶山', '许昌', '漯河', '开封', '周口', '商丘', '南阳', '信阳', '驻马店'] list_weather1 = [] for i in All_url: url = i['链接'] name = i['市,区'] if name in list_henan: url = url r = requests.get(url, headers={ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, ' 'like Gecko) Chrome/78.0.3904.70 Safari/537.36'}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) url_true = html1.xpath('//div[@class="gsbox"]//div[@class="forecastBox"]//dl//dt//a[1]') Item = { '城市': name, '链接': url_true[0].get('href') } list_weather1.append(Item) return list_weather1def get_text(): list_weather1 = [] list_weather = get_henan() for i in list_weather: url = i['链接'] name = i['城市'] r = requests.get(url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, ' 'like Gecko) Chrome/78.0.3904.70 Safari/537.36'}) # encode解码,将ISO-8859-1解码成unicode html = r.text.encode("ISO-8859-1") # decode编码,将unicode编码成utf-8 html = html.decode("utf-8") html1 = etree.HTML(html) data_time = html1.xpath('//div[@class="left fl"]//ul//li//h1') data_high_temperature = html1.xpath('//div[@class="left fl"]//ul//li//p[@class="tem"]//span') data_low_temperature = html1.xpath('//div[@class="left fl"]//ul//p[@class="tem"]//i') data_wind = html1.xpath('//div[@class="left fl"]//ul//li//p[@class="win"]//em//span') # 获取title标签 data_wind_level = html1.xpath('//div[@class="left fl"]//ul//li//p[@class="win"]//i') data_weather = html1.xpath('//div[@class="left fl"]//ul//li//p[@class="wea"]') # 获取title标签 for i in range(0, len(data_time)): Item = {'城市': name, '时间': data_time[i].text, '天气': data_weather[i].get('title'), '高温': data_high_temperature[i - 1].text, '低温': data_low_temperature[i].text, '风向': data_wind[i].get('title'), '风力': data_wind_level[i].text } list_weather1.append(Item) csv_File = open("D:\\henan_weather.csv", 'w', newline='') try: writer = csv.writer(csv_File) writer.writerow(('城市', '时间', '天气', '高温', '低温', '风力', '风向')) for i in list_weather1: writer.writerow((i['城市'], i['时间'], i['天气'], i['高温'], i['低温'], i['风力'], i['风向'])) finally: csv_File.close() print('河南天气获取成功')if __name__ == '__main__': get_text() get_weather()
写入数据库
import pymysqlimport xlrdlist_path = ['D:/China_weather/db_weather.xlsx', 'D:/China_weather/gat_weather.xlsx', 'D:/China_weather/hb_weather.xlsx', 'D:/China_weather/hz_weather.xlsx', 'D:/China_weather/hn_weather.xlsx', 'D:/China_weather/hd_weather.xlsx', 'D:/China_weather/xn_weather.xlsx', 'D:/China_weather/xb_weather.xlsx']name_database = ['db_weather', 'gat_weather', 'hb_weather', 'hz_weather', 'hn_weather', 'hd_weather', 'xn_weather', 'xb_weather']try: database = pymysql.connect(host='127.0.0.1', user='root', password='123456', database='java') print('连接成功')except: print('连接失败')cursor = database.cursor()for i in range(0, 7): try: path = list_path[i] db_database = xlrd.open_workbook(path) print("打开文件成功") except: print('打开文件失败') sheet = db_database.sheet_by_name('Sheet1') query = 'drop table if exists' + ' ' + name_database[i] cursor.execute(query) query = """create table""" + ' ' + name_database[i] + ' ' + """(id int AUTO_INCREMENT PRIMARY KEY,province varchar(30),city varchar(30),week_date varchar(30),wind varchar(30), high_temperature varchar(30),weather_p varchar(30),wind_2 varchar(30),low_temperature varchar(30))""" cursor.execute(query) name_insert = name_database[i] for i in range(1, sheet.nrows - 1): province = sheet.cell(i, 1).value city = sheet.cell(i, 2).value week_date = sheet.cell(i, 3).value wind = sheet.cell(i, 4).value high_temperature = sheet.cell(i, 5).value weather_p = sheet.cell(i, 6).value wind_2 = sheet.cell(i, 7).value low_temperature = sheet.cell(i, 8).value query = """insert into """ + ' ' + name_insert + ' ' + """(province, city, week_date, wind, high_temperature, weather_p, wind_2, low_temperature) values(%s,%s,%s,%s,%s,%s,%s,%s) """ cursor.execute(query, (province, city, week_date, wind, high_temperature, weather_p, wind_2, low_temperature)) database.commit() print(path, '写入数据库成功')cursor.close()database.close()
版权声明:
本站文章均来自互联网搜集,如有侵犯您的权益,请联系我们删除,谢谢。
标签: #基于python网络爬虫天气