前言:
现时咱们对“统计算法基础”大致比较注重,我们都需要剖析一些“统计算法基础”的相关资讯。那么小编在网摘上搜集了一些对于“统计算法基础””的相关文章,希望各位老铁们能喜欢,咱们一起来学习一下吧!医学论文有别于其他论文,我们那些“神圣”的数据都必须进行统计学处理,这时,大多数人会遇到一个难题,大学时期学过的《医学统计学》早就忘得差不多了,重新翻开统计学书本,基本上也是看得云里雾里。本教程有别于其他任何的统计学教程,其特点是略去一些高深难懂的统计学原理及计算公式,直奔解决实际问题的方法。
基础篇
1、均数与标准差
【例1】本组105 例,男55例,女50例;平均年龄:62.3±6.1岁,所有入选病例均符合1999年WHO高血压诊断标准。
举这个例子是为了说明“均数”与“标准差”的概念。【例1】中的数据“62.3±6.1”,“62.3”就是年龄的均数,均数的概念大家都懂,那么后面的“6.1”是什么呢?它就是标准差。有人可能会问,表达一组人的平均年龄,用均数就够了,为什么还要加一个标准差呢?统计学上对一组测量结果的数据都要用“均数±标准差”表示,习惯表达代号是:x±s,具体例子如:平均收缩压120±10.2mmHg。我们不必去深究这个公式是怎么样的,只需知道标准差越小,说明数据越集中,标准差越大,说明数据越分散。撰写医学论文的第一步是收集原始数据,如:
第1组身高(cm):98、99、100、101、102;
第2组身高(cm):80、90、100、110、120。
2、两样本均数t检验
【例2】目的研究中药板兰根对“非典”疗效。方法将36例“非典”患者随机分为治疗组19例,采用常规治疗+板兰根口服,对照组17例,仅采用常规治疗。结果 治疗组平均退热时间3.28±1.51d;对照组平均退热时间5.65±1.96d,两组间对照差别有极显著意义(p<0.01)结论 中药板兰根对“非典”有显效疗效,实为国之瑰宝。
这是最常见的一种统计学数据处理类型,统计学述语叫做“两样本均数差别t检验”,说得通俗易懂一些,就是检验两组方法所得到的数据到底有没有差异,或者说,差异是否有意义。
【例2】中一共有6个数据:第一组均数(X1)、标准差(S1)、例数(N1)与第二组均数(X2)、标准差(S2)、例数(N2),把这6个数据输入软件对应的框内,该软件就会利用预先存储的公式自动计算t值,并得出p<0.01,由此判断两组间的差别具有极显著的意义(如果没有想成为统计学专家,就不必去理解“t值”是什么了,知道“t值”是为了求“p值”用的就可以了),如下图。
3、配对计量资料t检验
【例3】目的研究音乐胎教对胎儿运动技能培养的效果。方法10例28~32周孕妇,分别记录听音乐(水浒传电视剧主题曲)前每小时的胎动次数及听音乐后每小时的胎动次数,结果数据如下表所示,音乐胎教后胎动次数增多,差别有显著意义(p<0.0525)结论 音乐胎教可增强胎儿运动技能,对培养我国运动天才有现实意义。
显然【例3】与【例2】有所不同,主要是【例3】两组间的数据可以前后配对的。我们经常碰到这种情况,即同一个体做两次处理,如治疗前检测某一指标,治疗后再检测某一指标,而后做治疗前后配对比较,以判断疗效。这种情况如何进行统计学处理呢?在软件中选择“配对资料t检验”,分别输入上面的2组数据,软件自动计算p<0.05,差别有显著意义,如下图。
切记,非配对资料误用配对t检验,则是错误的。
4、计数资料卡方检验
【例4】目的研究医患关系对重症病人死亡率的影响。方法根据问卷调查对收住重症监护病房的病人分为“医患关系良好组”与“医患关系紧张组”,比较两组间的住院死亡率。结果“医患关系良好组”25例,住院间死亡3例,死亡率13.6%,“医患关系紧张组”23例,住院间死亡9例,死亡率39.1%,两组间差别有显著意义(p<0.05)结论 医患关系紧张增加重症病人的住院死亡率,可能与医师害怕挨打而治疗方案趋向保守有关。
显然,对于计数资料,再用t检是不适合了,必须用卡方检验。卡方检验的步骤是:先求出X2值(类似于t检验时先求t值),然后进行判断:
⑴ 如果X2<3.84,则p>0.05;
⑵ 如果X2>3.84,则p<0.05;
⑶ 如果X2>6.63,则p<0.01。
解释一下,上面的两个数字“3.84”与“6.63”是查“X2界值表”得来的,只要记住即可。所以,卡方检验的关键是求出X2值。为了求出X2值,必须先介绍“四表格”概念。“四表格”的形式如下,关键数据是 a、b、c、d 四个数,X2值就是通过这四个数据计算出来的(这里仍不介绍公式,由软件计算。)。
现将【例4】中的数据填入“四表格”即如下图。
当你学会了填“四表格”数据之后,就能利用软件非常容易的进行卡方检验了,本软件提供与“四表格”完全相同的界面,选择“计数资料卡方检验”,把数据填写正确之后,就自动计算X2值并判断结果,【例4】X2=4.702>3.84,故p<0.05,如下图。
标签: #统计算法基础