龙空技术网

吊打 ThreadLocal,谈谈FastThreadLocal为啥能这么快?

老男孩的成长之路 1758

前言:

今天各位老铁们对“netty too many open files”大致比较珍视,朋友们都需要知道一些“netty too many open files”的相关知识。那么小编同时在网络上网罗了一些有关“netty too many open files””的相关知识,希望大家能喜欢,姐妹们快快来了解一下吧!

FastThreadLocal的引入背景和原理简介

既然jdk已经有ThreadLocal,为何netty还要自己造个FastThreadLocal?FastThreadLocal快在哪里?

这需要从jdk ThreadLocal的本身说起。如下图:

在java线程中,每个线程都有一个ThreadLocalMap实例变量(如果不使用ThreadLocal,不会创建这个Map,一个线程第一次访问某个ThreadLocal变量时,才会创建)。

该Map是使用线性探测的方式解决hash冲突的问题,如果没有找到空闲的slot,就不断往后尝试,直到找到一个空闲的位置,插入entry,这种方式在经常遇到hash冲突时,影响效率。

FastThreadLocal(下文简称ftl)直接使用数组避免了hash冲突的发生,具体做法是:每一个FastThreadLocal实例创建时,分配一个下标index;分配index使用AtomicInteger实现,每个FastThreadLocal都能获取到一个不重复的下标。

当调用ftl.get()方法获取值时,直接从数组获取返回,如return array[index],如下图:

实现源码分析

根据上文图示可知,ftl的实现,涉及到InternalThreadLocalMap、FastThreadLocalThread和FastThreadLocal几个类,自底向上,我们先从InternalThreadLocalMap开始分析。

InternalThreadLocalMap类的继承关系图如下:

2.1 UnpaddedInternalThreadLocalMap的主要属性

static final ThreadLocal<InternalThreadLocalMap> slowThreadLocalMap = new ThreadLocal<InternalThreadLocalMap>();static final AtomicInteger nextIndex = new AtomicInteger();Object[] indexedVariables;

数组indexedVariables就是用来存储ftl的value的,使用下标的方式直接访问。nextIndex在ftl实例创建时用来给每个ftl实例分配一个下标,slowThreadLocalMap在线程不是ftlt时使用到。

2.2 InternalThreadLocalMap分析

InternalThreadLocalMap的主要属性:

// 用于标识数组的槽位还未使用public static final Object UNSET = new Object();/** * 用于标识ftl变量是否注册了cleaner * BitSet简要原理: * BitSet默认底层数据结构是一个long[]数组,开始时长度为1,即只有long[0],而一个long有64bit。 * 当BitSet.set(1)的时候,表示将long[0]的第二位设置为true,即0000 0000 ... 0010(64bit),则long[0]==2 * 当BitSet.get(1)的时候,第二位为1,则表示true;如果是0,则表示false * 当BitSet.set(64)的时候,表示设置第65位,此时long[0]已经不够用了,扩容处long[1]来,进行存储 * * 存储类似 {index:boolean} 键值对,用于防止一个FastThreadLocal多次启动清理线程 * 将index位置的bit设为true,表示该InternalThreadLocalMap中对该FastThreadLocal已经启动了清理线程 */private BitSet cleanerFlags; private InternalThreadLocalMap() {        super(newIndexedVariableTable());}private static Object[] newIndexedVariableTable() {        Object[] array = new Object[32];        Arrays.fill(array, UNSET);        return array;}

比较简单,newIndexedVariableTable()方法创建长度为32的数组,然后初始化为UNSET,然后传给父类。之后ftl的值就保存到这个数组里面。

注意,这里保存的直接是变量值,不是entry,这是和jdk ThreadLocal不同的。InternalThreadLocalMap就先分析到这,其他方法在后面分析ftl再具体说。

2.3 ftlt的实现分析

要发挥ftl的性能优势,必须和ftlt结合使用,否则就会退化到jdk的ThreadLocal。ftlt比较简单,关键代码如下:

public class FastThreadLocalThread extends Thread {  // This will be set to true if we have a chance to wrap the Runnable.  private final boolean cleanupFastThreadLocals;    private InternalThreadLocalMap threadLocalMap;    public final InternalThreadLocalMap threadLocalMap() {        return threadLocalMap;  }  public final void setThreadLocalMap(InternalThreadLocalMap threadLocalMap) {        this.threadLocalMap = threadLocalMap;  }}

ftlt的诀窍就在threadLocalMap属性,它继承java Thread,然后聚合了自己的InternalThreadLocalMap。后面访问ftl变量,对于ftlt线程,都直接从InternalThreadLocalMap获取变量值。

2.4 ftl实现分析

ftl实现分析基于netty-4.1.34版本,特别地声明了版本,是因为在清除的地方,该版本的源码已经注释掉了ObjectCleaner的调用,和之前的版本有所不同。

2.4.1 ftl的属性和实例化

private final int index;public FastThreadLocal() {    index = InternalThreadLocalMap.nextVariableIndex();}

非常简单,就是给属性index赋值,赋值的静态方法在InternalThreadLocalMap:

 public static int nextVariableIndex() {        int index = nextIndex.getAndIncrement();        if (index < 0) {            nextIndex.decrementAndGet();            throw new IllegalStateException("too many thread-local indexed variables");        }        return index;  }

可见,每个ftl实例以步长为1的递增序列,获取index值,这保证了InternalThreadLocalMap中数组的长度不会突增。

2.4.2 get()方法实现分析

public final V get() {    InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get(); // 1    Object v = threadLocalMap.indexedVariable(index); // 2    if (v != InternalThreadLocalMap.UNSET) {        return (V) v;    }    V value = initialize(threadLocalMap); // 3    registerCleaner(threadLocalMap);  // 4    return value;}

1.先来看看InternalThreadLocalMap.get()方法如何获取threadLocalMap:

=======================InternalThreadLocalMap=======================    public static InternalThreadLocalMap get() {        Thread thread = Thread.currentThread();        if (thread instanceof FastThreadLocalThread) {            return fastGet((FastThreadLocalThread) thread);        } else {            return slowGet();        }    }      private static InternalThreadLocalMap fastGet(FastThreadLocalThread thread) {        InternalThreadLocalMap threadLocalMap = thread.threadLocalMap();        if (threadLocalMap == null) {            thread.setThreadLocalMap(threadLocalMap = new InternalThreadLocalMap());        }        return threadLocalMap;    }

因为结合FastThreadLocalThread使用才能发挥FastThreadLocal的性能优势,所以主要看fastGet方法。该方法直接从ftlt线程获取threadLocalMap,还没有则创建一个InternalThreadLocalMap实例并设置进去,然后返回。

2.threadLocalMap.indexedVariable(index)就简单了,直接从数组获取值,然后返回:

public Object indexedVariable(int index) {        Object[] lookup = indexedVariables;        return index < lookup.length? lookup[index] : UNSET;    }

3.如果获取到的值不是UNSET,那么是个有效的值,直接返回。如果是UNSET,则初始化。

initialize(threadLocalMap)方法:  private V initialize(InternalThreadLocalMap threadLocalMap) {        V v = null;        try {            v = initialValue();        } catch (Exception e) {            PlatformDependent.throwException(e);        }        threadLocalMap.setIndexedVariable(index, v); // 3-1        addToVariablesToRemove(threadLocalMap, this); // 3-2        return v;    }

3.1.获取ftl的初始值,然后保存到ftl里的数组,如果数组长度不够则扩充数组长度,然后保存,不展开。

3.2.addToVariablesToRemove(threadLocalMap, this)的实现,是将ftl实例保存在threadLocalMap内部数组第0个元素的Set集合中。

此处不贴代码,用图示如下:

4.registerCleaner(threadLocalMap)的实现,netty-4.1.34版本中的源码:

private void registerCleaner(final InternalThreadLocalMap threadLocalMap) {        Thread current = Thread.currentThread();        if (FastThreadLocalThread.willCleanupFastThreadLocals(current) || threadLocalMap.isCleanerFlagSet(index)) {            return;        }        threadLocalMap.setCleanerFlag(index);        // TODO: We need to find a better way to handle this.        /*        // We will need to ensure we will trigger remove(InternalThreadLocalMap) so everything will be released        // and FastThreadLocal.onRemoval(...) will be called.        ObjectCleaner.register(current, new Runnable() {            @Override            public void run() {                remove(threadLocalMap);                // It's fine to not call InternalThreadLocalMap.remove() here as this will only be triggered once                // the Thread is collected by GC. In this case the ThreadLocal will be gone away already.            }        });        */}

由于ObjectCleaner.register这段代码在该版本已经注释掉,而余下逻辑比较简单,因此不再做分析。

2.5 普通线程使用ftl的性能退化

随着get()方法分析完毕,set(value)方法原理也呼之欲出,限于篇幅,不再单独分析。

前文说过,ftl要结合ftlt才能最大地发挥其性能,如果是其他的普通线程,就会退化到jdk的ThreadLocal的情况,因为普通线程没有包含InternalThreadLocalMap这样的数据结构,接下来我们看如何退化。

从InternalThreadLocalMap的get()方法看起:

=======================InternalThreadLocalMap=======================    public static InternalThreadLocalMap get() {        Thread thread = Thread.currentThread();        if (thread instanceof FastThreadLocalThread) {            return fastGet((FastThreadLocalThread) thread);        } else {            return slowGet();        }    }  private static InternalThreadLocalMap slowGet() {       // 父类的类型为jdk ThreadLocald的静态属性,从该threadLocal获取InternalThreadLocalMap        ThreadLocal<InternalThreadLocalMap> slowThreadLocalMap = UnpaddedInternalThreadLocalMap.slowThreadLocalMap;        InternalThreadLocalMap ret = slowThreadLocalMap.get();        if (ret == null) {            ret = new InternalThreadLocalMap();            slowThreadLocalMap.set(ret);        }        return ret;    }

从ftl看,退化操作的整个流程是:从一个jdk的ThreadLocal变量中获取InternalThreadLocalMap,然后再从InternalThreadLocalMap获取指定数组下标的值,对象关系示意图:

ftl的资源回收机制

在netty中对于ftl提供了三种回收机制:

自动:使用ftlt执行一个被FastThreadLocalRunnable wrap的Runnable任务,在任务执行完毕后会自动进行ftl的清理。手动:ftl和InternalThreadLocalMap都提供了remove方法,在合适的时候用户可以(有的时候也是必须,例如普通线程的线程池使用ftl)手动进行调用,进行显示删除。自动:为当前线程的每一个ftl注册一个Cleaner,当线程对象不强可达的时候,该Cleaner线程会将当前线程的当前ftl进行回收。(netty推荐如果可以用其他两种方式,就不要再用这种方式,因为需要另起线程,耗费资源,而且多线程就会造成一些资源竞争,在netty-4.1.34版本中,已经注释掉了调用ObjectCleaner的代码。)

ftl在netty中的使用

ftl在netty中最重要的使用,就是分配ByteBuf。基本做法是:每个线程都分配一块内存(PoolArena),当需要分配ByteBuf时,线程先从自己持有的PoolArena分配,如果自己无法分配,再采用全局分配。

但是由于内存资源有限,所以还是会有多个线程持有同一块PoolArena的情况。不过这种方式已经最大限度地减轻了多线程的资源竞争,提高程序效率。

具体的代码在PoolByteBufAllocator的内部类PoolThreadLocalCache中:

final class PoolThreadLocalCache extends FastThreadLocal<PoolThreadCache> {    @Override        protected synchronized PoolThreadCache initialValue() {            final PoolArena<byte[]> heapArena = leastUsedArena(heapArenas);            final PoolArena<ByteBuffer> directArena = leastUsedArena(directArenas);            Thread current = Thread.currentThread();            if (useCacheForAllThreads || current instanceof FastThreadLocalThread) {              // PoolThreadCache即为各个线程持有的内存块的封装                return new PoolThreadCache(                        heapArena, directArena, tinyCacheSize, smallCacheSize, normalCacheSize,                        DEFAULT_MAX_CACHED_BUFFER_CAPACITY, DEFAULT_CACHE_TRIM_INTERVAL);            }            // No caching so just use 0 as sizes.            return new PoolThreadCache(heapArena, directArena, 0, 0, 0, 0, 0);        }    }

来源:

标签: #netty too many open files