龙空技术网

FPGA 的六大应用领域

丰科卓辰 265

前言:

此时朋友们对“fpga的优势”可能比较注重,兄弟们都需要剖析一些“fpga的优势”的相关文章。那么小编同时在网上网罗了一些关于“fpga的优势””的相关资讯,希望兄弟们能喜欢,兄弟们快快来学习一下吧!

FPGA 有什么用1)通信领域

FPGA 在通信领域的应用可以说是无所不能,得益于 FPGA 内部结构的特点,它可以很容易地实现分布式的算法结构,这一点对于实现无线通信中的高速数字信号处理十分有利。因为在无线通信系统中,许多功能模块通常都需要大量的滤波运算,而这些滤波函数往往需要大量的乘和累加操作。而通过 FPGA 来实现分布式的算术结构,就可以有效地实现这些乘和累加操作。尤其是 Xilinx 公司的 FPGA内部集成了大量的适合通信领域的一些资源比如:基带处理(通道卡)、接口和连接功能以及 RF(射频卡)三大类:

(1)基带处理资源

基带处理主要包括信道编解码(LDPC、Turbo、卷积码以及 RS 码的编解码算法)和同步算法的实现(WCDMA 系统小区搜索等)。

(2)接口和连接资源

接口和连接功能主要包括无线基站对外的高速通信接口(PCI Express、以太网 MAC、高速 AD/DA 接口)以及内部相应的背板协议(OBSAI、CPRI、EMIF、LinkPort)的实现。

(3)RF 应用资源

RF 应用主要包括调制/解调、上/下变频(WiMAX、WCDMA、TD-SCDMA 以及 CDMA2000 系统的单通道、多通道 DDC/DUC)、削峰(PC-CFR)以及预失真(Predistortion)等关键技术的实现。

总而言之只要你 FPGA 学的好,在通信领域你绝对可以大展身手。

2)数字信号处理领域

在数字信号处理领域 FPGA 同样所向披靡,主要是因为它的高速并行处理能力。FPGA 最大优势是其并行处理机制,即利用并行架构实现数字信号处理的功能。这一并行机制使得 FPGA 特别适合于完成 FIR 等数字滤波这样重复性的数字信号处理任务,对于高速并行的数字信号处理任务来说,FPGA 性能远远超过通用 DSP 处理器的串行执行架构,还有就是它接口的电压和驱动能力都是可编程配置的不像传统的 DSP 需要受指令集控制,因为指令集的时钟周期的限制,不能处理太高速的信号,对于速率级为 Gbps 的 LVDS 之类信号就难以涉及。所以在数字信号处理领域 FPGA 的应用也是十分广泛的。

3)视频图像处理领域

随着时代的变换,人们对图像的稳定性、清晰度、亮度和颜色的追求越来越高, 像以前的标清(SD)慢慢演变成高清(HD),到现在人们更是追求蓝光品质的图像。这使得处理芯片需要实时处理的数据量越来越大,并且图像的压缩算法也是越来越复杂,使得单纯的使用 ASSP 或者 DSP 已经满足不了如此大的数据处理量了。这时 FPGA 的优势就凸显出来了,它可以更加高效的处理数据,所以在图像处理领域在综合考虑成本后,FPGA 也越来越受到市场的欢迎。

4)高速接口设计领域

其实看了 FPGA 在通信领域和数字信号处理领域的表现,我想大家也已应该猜 到了在高速接口设计领域,FPGA 必然也是有一席之地的。它的高速处理能力和多达成百上千个的 IO 决定了它在高速接口设计领域的独特优势。

比如说我需要和 PC 端做数据交互,将采集到的数据送给 PC 机处理,或者将处理后的结果传给 PC 机进行显示。PC 机与外部系统通信的接口比较丰富,如 ISA、PCI、PCI Express、PS/2、USB 等。传统的做法是对应的接口使用对应的接口芯片,例如 PCI 接口芯片,当我需要很多接口时我就需要多个这样的接口芯片,这无疑会使我们的硬件外设变得复杂,体积变得庞大,会很不方便,但是如果使用 FPGA 优势立马就出来了,因为不同的接口逻辑都可以在 FPGA 内部去实现,完全没必要那么多的接口芯片,在配合 DDR 存储器的使用,将使我们接口数据的处理变得更加得心应手。

5)人工智能领域

如果大家比较喜欢关注科技板块的新闻的话最近一定会被 5G 通信和人工智能充斥 眼球,确实 21 世纪已经不知不觉走到了 2020 年,在这 20 年间,人工智能迅速发展,5G 的顺利研发也使人工智能如虎添翼,可以预见,未来必将是人工智能的天下。

FPGA 在人工智能系统的前端部分也是得到了广泛的应用,例如自动驾驶,需要对行驶路线、红绿灯、路障和行驶速度等各种交通信号进行采集,需要用到多种传感器,对这些传感器进行综合驱动和融合处理就可以使用 FPGA。还有一些智能机器人,需要对图像进行采集和处理,或者对声音信号进行处理都可以使用 FPGA 去完成,所以 FPGA 在人工智能系统的前端信息处理上使用起来得心应手。

6)IC 验证领域

IC 这个词大家可能一听到就觉得特别高深,不是凡人所能触及到的,而 IC 设计更是一些神人才能胜任的工作。不可否认的是 IC 设计门槛确实比较高,但是我们也没必要把它过于神话,其实简单点来讲我们可以拿 PCB 设计来与之比较,PCB 是拿一个个元器件在印制线路板上去搭建一个特定功能的电路组合,而 IC 设计呢是拿一个个 MOS 管,PN 节在硅基衬底上去搭建一个特定功能的电路组合,一个 宏观一个微观。PCB 如果设计废了大不了重新设计再打样也不会造成太大损失,但是如果 IC 设计废了再重新设计那损失就很惨重了,俗话说大炮一开,黄金万两,那么在 IC 领域光刻机一开黄金万两也不是吹的,光刻胶贵的要命,光刻板开模也不便宜,加上其他多达几百上千道工序,其中人力、物力、机器损耗、机器保养,绝对是让人肉疼的损失,所以 IC 设计都要强调一版成功。保证 IC 一版成功就要进行充分的仿真测试和 FPGA 验证,仿真验证是在服务器上面跑仿真软件进行测试,类似 ModelSim/VCS 软件;FPGA 验证主要是把 IC 的代码移植到 FPGA 上面,使用 FPGA 综合工具进行综合、布局布线到最终生成 bit 文件,然后下载到 FPGA 验证板上面进行验证,对于复杂的 IC 我们还可以给他拆成几个部分功能去分别验证,每个功能模块放在一个 FPGA 上面,FPGA 生成的电路非常接近真实的 IC 芯片。这样极大的方便我们 IC 设计人员去验证自己的 IC 设计。

本文转载自网络,如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间和您对接删除处理!

标签: #fpga的优势