前言:
此时各位老铁们对“net高并发处理方案”大致比较注重,小伙伴们都想要了解一些“net高并发处理方案”的相关资讯。那么小编同时在网络上搜集了一些有关“net高并发处理方案””的相关内容,希望大家能喜欢,小伙伴们快快来学习一下吧!引言商品秒杀-超卖解决商品超卖方式一(改进版加锁)方式二(AOP版加锁)方式三(悲观锁一)方式四(悲观锁二)方式五(乐观锁)方式六(阻塞队列)方式七(Disruptor队列)小结1.引言
高并发场景在现场的日常工作中很常见,特别是在互联网公司中,这篇文章就来通过秒杀商品来模拟高并发的场景。文章末尾会附上文章的所有代码、脚本和测试用例。
本文环境: SpringBoot 2.5.7 + MySQL 8.0 X + MybatisPlus + Swagger2.9.2模拟工具: Jmeter模拟场景: 减库存->创建订单->模拟支付2.商品秒杀-超卖
在开发中,对于下面的代码,可能很熟悉:在Service里面加上@Transactional事务注解和Lock锁
控制层:Controller
@ApiOperation(value="秒杀实现方式——Lock加锁")@PostMapping("/start/lock")public Result startLock(long skgId){ try { log.info("开始秒杀方式一..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; Result result = secondKillService.startSecondKillByLock(skgId, userId); if(result != null){ log.info("用户:{}--{}", userId, result.get("msg")); }else{ log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!"); } } catch (Exception e) { e.printStackTrace(); } finally { } return Result.ok();}
业务层:Service
@Override@Transactional(rollbackFor = Exception.class)public Result startSecondKillByLock(long skgId, long userId) { lock.lock(); try { // 校验库存 SecondKill secondKill = secondKillMapper.selectById(skgId); Integer number = secondKill.getNumber(); if (number > 0) { // 扣库存 secondKill.setNumber(number - 1); secondKillMapper.updateById(secondKill); // 创建订单 SuccessKilled killed = new SuccessKilled(); killed.setSeckillId(skgId); killed.setUserId(userId); killed.setState((short) 0); killed.setCreateTime(new Timestamp(System.currentTimeMillis())); successKilledMapper.insert(killed); // 模拟支付 Payment payment = new Payment(); payment.setSeckillId(skgId); payment.setSeckillId(skgId); payment.setUserId(userId); payment.setMoney(40); payment.setState((short) 1); payment.setCreateTime(new Timestamp(System.currentTimeMillis())); paymentMapper.insert(payment); } else { return Result.error(SecondKillStateEnum.END); } } catch (Exception e) { throw new ScorpiosException("异常了个乖乖"); } finally { lock.unlock(); } return Result.ok(SecondKillStateEnum.SUCCESS);}
对于上面的代码应该没啥问题吧,业务方法上加事务,在处理业务的时候加锁。
但上面这样写法是有问题的,会出现超卖的情况,看下测试结果:模拟1000个并发,抢100商品
Jmeter不了解的,可以参考这篇文章:
这里在业务方法开始加了锁,在业务方法结束后释放了锁。但这里的事务提交却不是这样的,有可能在事务提交之前,就已经把锁释放了,这样会导致商品超卖现象。所以加锁的时机很重要!
3. 解决商品超卖
对于上面超卖现象,主要问题出现在事务中锁释放的时机,事务未提交之前,锁已经释放。(事务提交是在整个方法执行完)。如何解决这个问题呢,就是把加锁步骤提前
可以在controller层进行加锁可以使用Aop在业务方法执行之前进行加锁3.1 方式一(改进版加锁)
@ApiOperation(value="秒杀实现方式——Lock加锁")@PostMapping("/start/lock")public Result startLock(long skgId){ // 在此处加锁 lock.lock(); try { log.info("开始秒杀方式一..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; Result result = secondKillService.startSecondKillByLock(skgId, userId); if(result != null){ log.info("用户:{}--{}", userId, result.get("msg")); }else{ log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!"); } } catch (Exception e) { e.printStackTrace(); } finally { // 在此处释放锁 lock.unlock(); } return Result.ok();}
上面这样的加锁就可以解决事务未提交之前,锁释放的问题,可以分三种情况进行压力测试:
并发数1000,商品100并发数1000,商品1000并发数2000,商品1000
对于并发量大于商品数的情况,商品秒杀一般不会出现少卖的请况,但对于并发数小于等于商品数的时候可能会出现商品少卖情况,这也很好理解。
对于没有问题的情况就不贴图了,因为有很多种方式,贴图会太多
3.2 方式二(AOP版加锁)
对于上面在控制层进行加锁的方式,可能显得不优雅,那就还有另一种方式进行在事务之前加锁,那就是AOP
自定义AOP注解
@Target({ElementType.PARAMETER, ElementType.METHOD})@Retention(RetentionPolicy.RUNTIME)@Documentedpublic @interface ServiceLock { String description() default "";}
定义切面类
@Slf4j@Component@Scope@Aspect@Order(1) //order越小越是最先执行,但更重要的是最先执行的最后结束public class LockAspect { /** * 思考:为什么不用synchronized * service 默认是单例的,并发下lock只有一个实例 */ private static Lock lock = new ReentrantLock(true); // 互斥锁 参数默认false,不公平锁 // Service层切点 用于记录错误日志 @Pointcut("@annotation(com.scorpios.secondkill.aop.ServiceLock)") public void lockAspect() { } @Around("lockAspect()") public Object around(ProceedingJoinPoint joinPoint) { lock.lock(); Object obj = null; try { obj = joinPoint.proceed(); } catch (Throwable e) { e.printStackTrace(); throw new RuntimeException(); } finally{ lock.unlock(); } return obj; }}
在业务方法上添加AOP注解
@Override@ServiceLock // 使用Aop进行加锁@Transactional(rollbackFor = Exception.class)public Result startSecondKillByAop(long skgId, long userId) { try { // 校验库存 SecondKill secondKill = secondKillMapper.selectById(skgId); Integer number = secondKill.getNumber(); if (number > 0) { //扣库存 secondKill.setNumber(number - 1); secondKillMapper.updateById(secondKill); //创建订单 SuccessKilled killed = new SuccessKilled(); killed.setSeckillId(skgId); killed.setUserId(userId); killed.setState((short) 0); killed.setCreateTime(new Timestamp(System.currentTimeMillis())); successKilledMapper.insert(killed); //支付 Payment payment = new Payment(); payment.setSeckillId(skgId); payment.setSeckillId(skgId); payment.setUserId(userId); payment.setMoney(40); payment.setState((short) 1); payment.setCreateTime(new Timestamp(System.currentTimeMillis())); paymentMapper.insert(payment); } else { return Result.error(SecondKillStateEnum.END); } } catch (Exception e) { throw new ScorpiosException("异常了个乖乖"); } return Result.ok(SecondKillStateEnum.SUCCESS);}
控制层:
@ApiOperation(value="秒杀实现方式二——Aop加锁")@PostMapping("/start/aop")public Result startAop(long skgId){ try { log.info("开始秒杀方式二..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; Result result = secondKillService.startSecondKillByAop(skgId, userId); if(result != null){ log.info("用户:{}--{}", userId, result.get("msg")); }else{ log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!"); } } catch (Exception e) { e.printStackTrace(); } return Result.ok();}
这种方式在对锁的使用上,更高阶、更美观!
3.3 方式三(悲观锁一)
除了上面在业务代码层面加锁外,还可以使用数据库自带的锁进行并发控制。
悲观锁,什么是悲观锁呢?通俗的说,在做任何事情之前,都要进行加锁确认。这种数据库级加锁操作效率较低。
使用for update一定要加上事务,当事务处理完后,for update才会将行级锁解除
如果请求数和秒杀商品数量一致,会出现少卖
@ApiOperation(value="秒杀实现方式三——悲观锁")@PostMapping("/start/pes/lock/one")public Result startPesLockOne(long skgId){ try { log.info("开始秒杀方式三..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; Result result = secondKillService.startSecondKillByUpdate(skgId, userId); if(result != null){ log.info("用户:{}--{}", userId, result.get("msg")); }else{ log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!"); } } catch (Exception e) { e.printStackTrace(); } return Result.ok();}
业务逻辑
@Override@Transactional(rollbackFor = Exception.class)public Result startSecondKillByUpdate(long skgId, long userId) { try { // 校验库存-悲观锁 SecondKill secondKill = secondKillMapper.querySecondKillForUpdate(skgId); Integer number = secondKill.getNumber(); if (number > 0) { //扣库存 secondKill.setNumber(number - 1); secondKillMapper.updateById(secondKill); //创建订单 SuccessKilled killed = new SuccessKilled(); killed.setSeckillId(skgId); killed.setUserId(userId); killed.setState((short) 0); killed.setCreateTime(new Timestamp(System.currentTimeMillis())); successKilledMapper.insert(killed); //支付 Payment payment = new Payment(); payment.setSeckillId(skgId); payment.setSeckillId(skgId); payment.setUserId(userId); payment.setMoney(40); payment.setState((short) 1); payment.setCreateTime(new Timestamp(System.currentTimeMillis())); paymentMapper.insert(payment); } else { return Result.error(SecondKillStateEnum.END); } } catch (Exception e) { throw new ScorpiosException("异常了个乖乖"); } finally { } return Result.ok(SecondKillStateEnum.SUCCESS);}
Dao层
@Repositorypublic interface SecondKillMapper extends BaseMapper<SecondKill> { /** * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁 * @param skgId * @return */ @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE") SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);}
上面是利用for update进行对查询数据加锁,加的是行锁
3.4 方式四(悲观锁二)
悲观锁的第二种方式就是利用update更新命令来加表锁
/** * UPDATE锁表 * @param skgId 商品id * @param userId 用户id * @return */@Override@Transactional(rollbackFor = Exception.class)public Result startSecondKillByUpdateTwo(long skgId, long userId) { try { // 不校验,直接扣库存更新 int result = secondKillMapper.updateSecondKillById(skgId); if (result > 0) { //创建订单 SuccessKilled killed = new SuccessKilled(); killed.setSeckillId(skgId); killed.setUserId(userId); killed.setState((short) 0); killed.setCreateTime(new Timestamp(System.currentTimeMillis())); successKilledMapper.insert(killed); //支付 Payment payment = new Payment(); payment.setSeckillId(skgId); payment.setSeckillId(skgId); payment.setUserId(userId); payment.setMoney(40); payment.setState((short) 1); payment.setCreateTime(new Timestamp(System.currentTimeMillis())); paymentMapper.insert(payment); } else { return Result.error(SecondKillStateEnum.END); } } catch (Exception e) { throw new ScorpiosException("异常了个乖乖"); } finally { } return Result.ok(SecondKillStateEnum.SUCCESS);}
Dao层
@Repositorypublic interface SecondKillMapper extends BaseMapper<SecondKill> { /** * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁 * @param skgId * @return */ @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE") SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId); @Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0") int updateSecondKillById(@Param("skgId") long skgId);}3.5 方式五(乐观锁)
乐观锁,顾名思义,就是对操作结果很乐观,通过利用version字段来判断数据是否被修改
乐观锁,不进行库存数量的校验,直接做库存扣减
这里使用的乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败)、如果配置的抢购人数比较少、比如120:100(人数:商品) 会出现少买的情况,不推荐使用乐观锁。
@ApiOperation(value="秒杀实现方式五——乐观锁")@PostMapping("/start/opt/lock")public Result startOptLock(long skgId){ try { log.info("开始秒杀方式五..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; // 参数添加了购买数量 Result result = secondKillService.startSecondKillByPesLock(skgId, userId,1); if(result != null){ log.info("用户:{}--{}", userId, result.get("msg")); }else{ log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!"); } } catch (Exception e) { e.printStackTrace(); } return Result.ok();}
@Override@Transactional(rollbackFor = Exception.class)public Result startSecondKillByPesLock(long skgId, long userId, int number) { // 乐观锁,不进行库存数量的校验,直接 try { SecondKill kill = secondKillMapper.selectById(skgId); // 剩余的数量应该要大于等于秒杀的数量 if(kill.getNumber() >= number) { int result = secondKillMapper.updateSecondKillByVersion(number,skgId,kill.getVersion()); if (result > 0) { //创建订单 SuccessKilled killed = new SuccessKilled(); killed.setSeckillId(skgId); killed.setUserId(userId); killed.setState((short) 0); killed.setCreateTime(new Timestamp(System.currentTimeMillis())); successKilledMapper.insert(killed); //支付 Payment payment = new Payment(); payment.setSeckillId(skgId); payment.setSeckillId(skgId); payment.setUserId(userId); payment.setMoney(40); payment.setState((short) 1); payment.setCreateTime(new Timestamp(System.currentTimeMillis())); paymentMapper.insert(payment); } else { return Result.error(SecondKillStateEnum.END); } } } catch (Exception e) { throw new ScorpiosException("异常了个乖乖"); } finally { } return Result.ok(SecondKillStateEnum.SUCCESS);}
@Repositorypublic interface SecondKillMapper extends BaseMapper<SecondKill> { /** * 将此行数据进行加锁,当整个方法将事务提交后,才会解锁 * @param skgId * @return */ @Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE") SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId); @Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0") int updateSecondKillById(@Param("skgId") long skgId); @Update(value = "UPDATE seckill SET number=number-#{number},version=version+1 WHERE seckill_id=#{skgId} AND version = #{version}") int updateSecondKillByVersion(@Param("number") int number, @Param("skgId") long skgId, @Param("version")int version);}
乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败),会出现少买的情况,不推荐使用乐观锁
3.6 方式六(阻塞队列)
利用阻塞队类,也可以解决高并发问题。其思想就是把接收到的请求按顺序存放到队列中,消费者线程逐一从队列里取数据进行处理,看下具体代码。
阻塞队列:这里使用静态内部类的方式来实现单例模式,在并发条件下不会出现问题。
// 秒杀队列(固定长度为100)public class SecondKillQueue { // 队列大小 static final int QUEUE_MAX_SIZE = 100; // 用于多线程间下单的队列 static BlockingQueue<SuccessKilled> blockingQueue = new LinkedBlockingQueue<SuccessKilled>(QUEUE_MAX_SIZE); // 使用静态内部类,实现单例模式 private SecondKillQueue(){}; private static class SingletonHolder{ // 静态初始化器,由JVM来保证线程安全 private static SecondKillQueue queue = new SecondKillQueue(); } /** * 单例队列 * @return */ public static SecondKillQueue getSkillQueue(){ return SingletonHolder.queue; } /** * 生产入队 * @param kill * @throws InterruptedException * add(e) 队列未满时,返回true;队列满则抛出IllegalStateException(“Queue full”)异常——AbstractQueue * put(e) 队列未满时,直接插入没有返回值;队列满时会阻塞等待,一直等到队列未满时再插入。 * offer(e) 队列未满时,返回true;队列满时返回false。非阻塞立即返回。 * offer(e, time, unit) 设定等待的时间,如果在指定时间内还不能往队列中插入数据则返回false,插入成功返回true。 */ public Boolean produce(SuccessKilled kill) { return blockingQueue.offer(kill); } /** * 消费出队 * poll() 获取并移除队首元素,在指定的时间内去轮询队列看有没有首元素有则返回,否者超时后返回null * take() 与带超时时间的poll类似不同在于take时候如果当前队列空了它会一直等待其他线程调用notEmpty.signal()才会被唤醒 */ public SuccessKilled consume() throws InterruptedException { return blockingQueue.take(); } /** * 获取队列大小 * @return */ public int size() { return blockingQueue.size(); }}
消费秒杀队列:实现ApplicationRunner接口
// 消费秒杀队列@Slf4j@Componentpublic class TaskRunner implements ApplicationRunner{ @Autowired private SecondKillService seckillService; @Override public void run(ApplicationArguments var){ new Thread(() -> { log.info("队列启动成功"); while(true){ try { // 进程内队列 SuccessKilled kill = SecondKillQueue.getSkillQueue().consume(); if(kill != null){ Result result = seckillService.startSecondKillByAop(kill.getSeckillId(), kill.getUserId()); if(result != null && result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){ log.info("TaskRunner,result:{}",result); log.info("TaskRunner从消息队列取出用户,用户:{}{}",kill.getUserId(),"秒杀成功"); } } } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); }}
@ApiOperation(value="秒杀实现方式六——消息队列")@PostMapping("/start/queue")public Result startQueue(long skgId){ try { log.info("开始秒杀方式六..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; SuccessKilled kill = new SuccessKilled(); kill.setSeckillId(skgId); kill.setUserId(userId); Boolean flag = SecondKillQueue.getSkillQueue().produce(kill); // 虽然进入了队列,但是不一定能秒杀成功 进队出队有时间间隙 if(flag){ log.info("用户:{}{}",kill.getUserId(),"秒杀成功"); }else{ log.info("用户:{}{}",userId,"秒杀失败"); } } catch (Exception e) { e.printStackTrace(); } return Result.ok();}
注意:在业务层和AOP方法中,不能抛出任何异常, throw new RuntimeException()这些抛异常代码要注释掉。因为一旦程序抛出异常就会停止,导致消费秒杀队列进程终止!
使用阻塞队列来实现秒杀,有几点要注意:
消费秒杀队列中调用业务方法加锁与不加锁情况一样,也就是seckillService.startSecondKillByAop()、seckillService.startSecondKillByLock()方法结果一样,这也很好理解当队列长度与商品数量一致时,会出现少卖的现象,可以调大数值下面是队列长度1000,商品数量1000,并发数2000情况下出现的少卖3.7.方式七(Disruptor队列)
Disruptor是个高性能队列,研发的初衷是解决内存队列的延迟问题,在性能测试中发现竟然与I/O操作处于同样的数量级,基于Disruptor开发的系统单线程能支撑每秒600万订单。
// 事件生成工厂(用来初始化预分配事件对象)public class SecondKillEventFactory implements EventFactory<SecondKillEvent> { @Override public SecondKillEvent newInstance() { return new SecondKillEvent(); }}
// 事件对象(秒杀事件)public class SecondKillEvent implements Serializable { private static final long serialVersionUID = 1L; private long seckillId; private long userId; // set/get方法略}
// 使用translator方式生产者public class SecondKillEventProducer { private final static EventTranslatorVararg<SecondKillEvent> translator = (seckillEvent, seq, objs) -> { seckillEvent.setSeckillId((Long) objs[0]); seckillEvent.setUserId((Long) objs[1]); }; private final RingBuffer<SecondKillEvent> ringBuffer; public SecondKillEventProducer(RingBuffer<SecondKillEvent> ringBuffer){ this.ringBuffer = ringBuffer; } public void secondKill(long seckillId, long userId){ this.ringBuffer.publishEvent(translator, seckillId, userId); }}
// 消费者(秒杀处理器)@Slf4jpublic class SecondKillEventConsumer implements EventHandler<SecondKillEvent> { private SecondKillService secondKillService = (SecondKillService) SpringUtil.getBean("secondKillService"); @Override public void onEvent(SecondKillEvent seckillEvent, long seq, boolean bool) { Result result = secondKillService.startSecondKillByAop(seckillEvent.getSeckillId(), seckillEvent.getUserId()); if(result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){ log.info("用户:{}{}",seckillEvent.getUserId(),"秒杀成功"); } }}
public class DisruptorUtil { static Disruptor<SecondKillEvent> disruptor; static{ SecondKillEventFactory factory = new SecondKillEventFactory(); int ringBufferSize = 1024; ThreadFactory threadFactory = runnable -> new Thread(runnable); disruptor = new Disruptor<>(factory, ringBufferSize, threadFactory); disruptor.handleEventsWith(new SecondKillEventConsumer()); disruptor.start(); } public static void producer(SecondKillEvent kill){ RingBuffer<SecondKillEvent> ringBuffer = disruptor.getRingBuffer(); SecondKillEventProducer producer = new SecondKillEventProducer(ringBuffer); producer.secondKill(kill.getSeckillId(),kill.getUserId()); }}
@ApiOperation(value="秒杀实现方式七——Disruptor队列")@PostMapping("/start/disruptor")public Result startDisruptor(long skgId){ try { log.info("开始秒杀方式七..."); final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000; SecondKillEvent kill = new SecondKillEvent(); kill.setSeckillId(skgId); kill.setUserId(userId); DisruptorUtil.producer(kill); } catch (Exception e) { e.printStackTrace(); } return Result.ok();}
经过测试,发现使用Disruptor队列队列,与自定义队列有着同样的问题,也会出现超卖的情况,但效率有所提高。
4. 小结
对于上面七种实现并发的方式,做一下总结:
一、二方式是在代码中利用锁和事务的方式解决了并发问题,主要解决的是锁要加载事务之前三、四、五方式主要是数据库的锁来解决并发问题,方式三是利用for upate对表加行锁,方式四是利用update来对表加锁,方式五是通过增加version字段来控制数据库的更新操作,方式五的效果最差六、七方式是通过队列来解决并发问题,这里需要特别注意的是,在代码中不能通过throw抛异常,否则消费线程会终止,而且由于进队和出队存在时间间隙,会导致商品少卖
上面所有的情况都经过代码测试,测试分一下三种情况:
并发数1000,商品数100并发数1000,商品数1000并发数2000,商品数1000
思考:分布式情况下如何解决并发问题呢?下次继续试验。
源码地址:
标签: #net高并发处理方案