龙空技术网

这些神奇的数学知道吗

爱数学的女孩儿 194

前言:

此刻大家对“幻方是什么玩意儿”大致比较讲究,你们都想要知道一些“幻方是什么玩意儿”的相关内容。那么小编同时在网络上汇集了一些对于“幻方是什么玩意儿””的相关内容,希望咱们能喜欢,咱们快快来学习一下吧!

特殊两位数乘法的速算

如果两个两位数的十位相同,个位数相加为 10,那么你可以立即说出这两个数的乘积。如果这两个数分别写作 AB 和 AC,那么它们的乘积的前两位就是 A 和 A + 1 的乘积,后两位就是 B 和 C 的乘积。

比如,47 和 43 的十位数相同,个位数之和为 10,因而它们乘积的前两位就是 4×(4 + 1)=20,后两位就是 7×3=21。也就是说,47×43=2021。

类似地,61×69=4209,86×84=7224,35×35=1225,等等。

这个速算方法背后的原因是,(10 x + y) (10 x + (10 - y)) = 100 x (x + 1) + y (10 - y) 对任意 x 和 y 都成立。

幻方中的幻“方”

一个“三阶幻方”是指把数字 1 到 9 填入 3×3 的方格,使得每一行、每一列和两条对角线的三个数之和正好都相同。下图就是一个三阶幻方,每条直线上的三个数之和都等于 15。

大家或许都听说过幻方这玩意儿,但不知道幻方中的一些美妙的性质。例如,任意一个三阶幻方都满足,各行所组成的三位数的平方和,等于各行逆序所组成的三位数的平方和。对于上图中的三阶幻方,就有

816² + 357² + 492² = 618² + 753² + 294²

利用线性代数,我们可以证明这个结论。

天然形成的幻方

从 1/19 到 18/19 这 18 个分数的小数循环节长度都是 18。把这 18 个循环节排成一个 18×18 的数字阵,恰好构成一个幻方——每一行、每一列和两条对角线上的数字之和都是 81

(注:严格意义上说它不算幻方,因为方阵中有相同数字)。

196 算法

一个数正读反读都一样,我们就把它叫做“回文数”。随便选一个数,不断加上把它反过来写之后得到的数,直到得出一个回文数为止。例如,所选的数是 67,两步就可以得到一个回文数 484:

67 + 76 = 143

143 + 341 = 484

把 69 变成一个回文数则需要四步:

69 + 96 = 165

165 + 561 = 726

726 + 627 = 1353

1353 + 3531 = 4884

89 的“回文数之路”则特别长,要到第 24 步才会得到第一个回文数,8813200023188。

大家或许会想,不断地“一正一反相加”,最后总能得到一个回文数,这当然不足为奇了。事实情况也确实是这样——对于 几乎 所有的数,按照规则不断加下去,迟早会出现回文数。

不过,196 却是一个相当引人注目的例外。数学家们已经用计算机算到了 3 亿多位数,都没有产生过一次回文数。从 196 出发,究竟能否加出回文数来?196 究竟特殊在哪儿?这至今仍是个谜。

标签: #幻方是什么玩意儿