龙空技术网

pandas 库函数方法集合--concat_02行与列上合并多个df

跨越202407 98

前言:

如今小伙伴们对“pandas 多个dataframe合并”大致比较看重,兄弟们都需要知道一些“pandas 多个dataframe合并”的相关资讯。那么小编也在网上搜集了一些有关“pandas 多个dataframe合并””的相关资讯,希望咱们能喜欢,朋友们快快来了解一下吧!

20240114星期日:

记录一下:

'''1. concat的基本用法concat函数的基本用法如下:pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)其中,objs参数是要合并的对象,可以是Series、DataFrame或Panel对象。axis参数指定合并的轴,可以是0(行)或(列)。join参数指定合并的方式,可以是inner(交集)或outer(并集)。ignore_index参数指定是否忽略原始索引。keys参数指定合并后的层化索引。levels参数指定层次化索引的别。names参数指定层次化引的名称。verify_integrity指定是否检查合并的数据是否重复。sort参数指定是否按照字典序排序。copy参数指定是否复制数据。'''# 2. concat函数的高级用# 2.1 在列上合并多个DataFrame# 以下是一个在列上合并多个DataFrame的示例:import pandas as pddf1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})df2 = pd.DataFrame({'C': [7, 8, 9], 'D': [10, 11, 12]})df3 = pd.DataFrame({'E': [13, 14, 15], 'F': [16, 17, 18]})result = pd.concat([df1, df2, df3], axis=1)print(result)# 输出结果如下:##    A  B  C   D   E   F# 0  1  4  7  10  13  16# 1  2  5  8  11  14  17# 2  3  6  9  12  15  18# 2.2 在行上合并多个DataFrame# 以下是一个在行上合并多个DataFrame的示例:import pandas as pddf1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [10, 11, 12]})df3 = pd.DataFrame({'A': [13, 14, 15], 'B': [16, 17, 18]})result = pd.concat([df1, df2, df3], axis=0)print(result)# 输出结果如下:#     A   B# 0   1   4# 1   2   5# 2   3   6# 0   7  10# 1   8  11# 2   9  12# 0  13  16# 1  14  17# 2  15  18# 3. 结论# concat函数是一个用于合并数据的函数,可以在多个轴上进行合并。# 在使用concat函数时,需要注意参数的含义和用法。# 根据具体需求选择合适的合并方式,可以在列上或行上合并多个DataFrame。

标签: #pandas 多个dataframe合并