龙空技术网

Kafka Partition存储机制与高吞吐率原理

JAVA柯尼塞克丶 1726

前言:

今天兄弟们对“kafka partion 原理”大约比较着重,咱们都需要分析一些“kafka partion 原理”的相关知识。那么小编同时在网摘上网罗了一些有关“kafka partion 原理””的相关内容,希望大家能喜欢,姐妹们一起来学习一下吧!

一、Topic定义与Partition存储机制

Topic在逻辑上可以被认为是一个管道,每条生产/消费都必须指明Topic,也就是指定这条消息应该在哪条管道进行传输。

为了使得Kafka的吞吐率可以线性提高,物理上把Topic分成一个或多个Partition,每个Partition在物理上对应一个文件夹,该文件夹下存储这个Partition的所有消息和索引文件。

每个日志文件都是一个log entrie序列,每个log entrie包含一个4字节整型数值(值为N+5),1个字节的"magic value",4个字节的CRC校验码,其后跟N个字节的消息体。每条消息都有一个当前Partition下唯一的64字节的offset,它指明了这条消息的起始位置。

这个log entries并非由一个文件构成,而是分成多个Segment,每个Segment以该Segment第一条消息的offset命名并以“.kafka”为后缀。另外会有一个索引文件,它标明了每个Segment下包含的log entry的offset范围,如下图所示:

每条消息都被append到该Partition中,属于顺序写磁盘,因此效率非常高。顺序写磁盘效率比随机写内存还要高,这是Kafka高吞吐率的一个很重要的保证。

对于传统的消息队列而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略删除旧数据。一是基于时间,二是基于Partition文件大小。

例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可在Partition文件超过1GB时删除旧数据,配置如下所示:

log.retention.hours=168

log.segment.bytes=1073741824

log.retention.check.interval.ms=300000

log.cleaner.enable=false

这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除过期文件与提高Kafka性能无关。选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个Consumer Group保留一些元数据信息——当前消费的消息的position,也即offset。这个offset由Consumer控制。正常情况下Consumer会在消费完一条消息后递增该offset。当然,Consumer也可将offset设成一个较小的值,重新消费一些消息。因为offset由Consumer控制,所以Kafka Broker是无状态的,它不需要标记哪些消息被哪些消费过,也不需要通过Broker去保证同一个Consumer Group只有一个Consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。

二、Producer端发送机制

Producer发送消息到Broker时,会根据Paritition机制选择将其存储到哪一个Partition。如果Partition机制设置合理,所有消息可以均匀分布到不同的Partition里,这样就实现了负载均衡。如果一个Topic对应一个文件,那这个文件所在的机器I/O将会成为这个Topic的性能瓶颈,而有了Partition后,不同的消息可以并行写入不同Broker的不同Partition里,极大的提高了吞吐率。

可以在$KAFKA_HOME/config/server.properties中通过配置项num.partitions来指定新建Topic的默认Partition数量,也可在创建Topic时通过参数指定,同时也可以在Topic创建之后通过Kafka提供的工具修改。

在发送一条消息时,可以指定这条消息的key,Producer根据这个key和Partition机制来判断应该将这条消息发送到哪个Parition。Paritition机制可以通过指定Producer的paritition.class这一参数来指定,该class必须实现kafka.producer.Partitioner接口。

(例如将key和partitions进行取余,key为4,partitions为3,则这个key落在第2个partition上。可以通过控制key的值和partition的值一致,将key相同的消息发送到同一个partition上)

三、Consumer端消费机制

使用Consumer high level API时,同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。

这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现广播,只要每个Consumer有一个独立的Group就可以了。要实现单播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。

实际上,Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的Consumer属于不同的Consumer Group即可。

四、Delivery Guarantee

有这么几种可能的delivery guarantee:

1、At most once 消息可能会丢,但绝不会重复传输。

2、At least one 消息绝不会丢,但可能会重复传输。

3、Exactly once 每条消息肯定会被传输一次且仅传输一次,很多时候这是用户所想要的。

当Producer向Broker发送消息时,一旦这条消息被commit,因Replication的存在,它就不会丢。但是如果Producer发送数据给Broker后,遇到网络问题而造成通信中断,那Producer就无法判断该条消息是否已经commit。虽然Kafka无法确定网络故障期间发生了什么,但是Producer可以生成一种类似于主键的东西,发生故障时幂等性的重试多次,这样就做到了Exactly once。(仅针对Kafka consumer high level API)。

Consumer在从Broker读取消息后,可以选择commit,该操作会在Zookeeper中保存该Consumer在该Partition中读取的消息的offset。该Consumer下一次再读该Partition时会从下一条开始读取。如未commit,下一次读取的开始位置会跟上一次commit之后的开始位置相同。当然可以将Consumer设置为autocommit,即Consumer一旦读到数据立即自动commit。如果只讨论这一读取消息的过程,那Kafka是确保了Exactly once。但实际使用中应用程序并非在Consumer读取完数据就结束了,而是要进行进一步处理,而数据处理与commit的顺序在很大程度上决定了消息从Broker和Consumer的delivery guarantee semantic。

1、读完消息先commit再处理消息。这种模式下,如果Consumer在commit后还没来得及处理消息就crash了,下次重新开始工作后就无法读到刚刚已提交而未处理的消息,这就对应于At most once

2、读完消息先处理再commit。这种模式下,如果在处理完消息之后commit之前Consumer crash了,下次重新开始工作时还会处理刚刚未commit的消息,实际上该消息已经被处理过了。这就对应于At least once。在很多使用场景下,消息都有一个主键,所以消息的处理往往具有幂等性,即多次处理这一条消息跟只处理一次是等效的,那就可以认为是Exactly once。

3、如果一定要做到Exactly once,就需要协调offset和实际操作的输出。精典的做法是引入两阶段提交。如果能让offset和操作输入存在同一个地方,会更简洁和通用。这种方式可能更好,因为许多输出系统可能不支持两阶段提交。比如,Consumer拿到数据后可能把数据放到HDFS,如果把最新的offset和数据本身一起写到HDFS,那就可以保证数据的输出和offset的更新要么都完成,要么都不完成,间接实现Exactly once。(目前就high level API而言,offset是存于Zookeeper中的,无法存于HDFS,而low level API的offset是由自己去维护的,可以将之存于HDFS中)

总之,Kafka默认保证At least once,并且允许通过设置Producer异步提交来实现At most once。而Exactly once要求与外部存储系统协作,幸运的是Kafka提供的offset可以非常直接非常容易得使用这种方式。

标签: #kafka partion 原理 #kafka中的partition