前言:
现时同学们对“流水号java”都比较讲究,看官们都想要知道一些“流水号java”的相关内容。那么小编在网络上汇集了一些有关“流水号java””的相关内容,希望看官们能喜欢,我们快快来学习一下吧!在如今互联网的后端业务系统中,涉及到各种各样的id,主键id、订单id、支付id、退款id,下面我一一来列举一下,不一定全部适合,这些解决方案仅供你参考,或许对你有用。
方案:
1.UUID
算法的核心思想是结合机器的网卡、当地时间、一个随记数来生成UUID。
优点:本地生成,生成简单,性能好,没有高可用风险
缺点:长度过长,存储冗余,且无序不可读,查询效率低
2.UUID的变种
为了解决UUID不可读,可以使用UUID的变种,示例代码:
3.利用zookeeper生成唯一ID
zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。
很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。
4.数据库自增ID
使用数据库的id自增策略,如mysql的auto_increment,并且可以使用两台数据库分别设置不同步长,生成不重复ID的策略来实现高可用。
优点:数据库生成的ID绝对有序,高可用实现方式简单
缺点:需要独立部署数据库实例,成本高,有性能瓶颈
5.批量生成ID
一次按需批量生成多个ID,每次生成都需要访问数据库,将数据库修改为最大的ID值,并在内存中记录当前值及最大值。
优点:避免了每次生成ID都要访问数据库并带来压力,提高性能
缺点:属于本地生成策略,存在单点故障,服务重启造成ID不连续
6.redis生成ID
Redis的所有命令操作都是单线程的,本身提供像 incr 和 increby 这样的自增原子命令,所以能保证生成的 ID 肯定是唯一有序的。
优点:不依赖于数据库,灵活方便,且性能优于数据库;数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:如果系统中没有Redis,还需要引入新的组件,增加系统复杂度;需要编码和配置的工作量比较大。
考虑到单节点的性能瓶颈,可以使用 Redis 集群来获取更高的吞吐量。假如一个集群中有5台 Redis。可以初始化每台 Redis 的值分别是1, 2, 3, 4, 5,然后步长都是 5。各个 Redis 生成的 ID 为:
A:1, 6, 11, 16, 21
B:2, 7, 12, 17, 22
C:3, 8, 13, 18, 23
D:4, 9, 14, 19, 24
E:5, 10, 15, 20, 25
随便负载到哪个机确定好,未来很难做修改。步长和初始值一定需要事先确定。使用 Redis 集群也可以方式单点故障的问题。
另外,比较适合使用 Redis 来生成每天从0开始的流水号。比如订单号 = 日期 + 当日自增长号。可以每天在 Redis 中生成一个 Key ,使用 INCR 进行累加。
7. Twitter的snowflake算法
Twitter 利用 zookeeper 实现了一个全局ID生成的服务 Snowflake:github.com/twitter/sno…
优点:高性能,低延迟,按时间有序,一般不会造成ID碰撞
缺点:需要独立的开发和部署,依赖于机器的时钟
8.百度UidGenerator(目前我也在使用这个)
UidGenerator是百度开源的分布式ID生成器,基于于snowflake算法的实现,看起来感觉还行。不过,国内开源的项目维护性真是担忧。
具体可以参考官网说明:
9. 美团Leaf
Leaf 是美团开源的分布式ID生成器,能保证全局唯一性、趋势递增、单调递增、信息安全,里面也提到了几种分布式方案的对比,但也需要依赖关系数据库、Zookeeper等中间件。
具体可以参考官网说明:
10. MongoDB的ObjectId
MongoDB的ObjectId和snowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB 从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。
标签: #流水号java #mysql生成uuid