龙空技术网

红黑树 都可以这么细?面试官还能怎么说.

linux技术栈 1418

前言:

目前兄弟们对“nginx红黑树用在什么地方”大概比较关切,看官们都想要知道一些“nginx红黑树用在什么地方”的相关文章。那么小编同时在网摘上搜集了一些有关“nginx红黑树用在什么地方””的相关文章,希望大家能喜欢,朋友们一起来学习一下吧!

linux服务器开发相关视频解析:

5种红黑树的场景,从Linux内核谈到Nginx源码,听完醍醐灌顶

10道经典面试题的剖析, 技术方向如何决定职业方向

红黑树的性质:

首先记住它的性质:

在增删节点时需要调整满足性质

1、根节点是黑色的;

2、如果一个节点是红色的,则它的两个孩子结点是黑色的;

3、对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点;

4、每个叶子结点都是黑色的(此处的叶子结点指的是空结点);

对颜色进行定义:

//我们用枚举表示表示出两种颜色  //枚举默认第一个参数 BLACK 为 0 ,第二个参数 RED 为 1;enum COLOR {	BLACK,	RED};

红黑树的节点表示:

看图说节点

红黑树的节点参数,

一个指向上面的节点定义为_parent

一个指向左边的节点的节点指针 _left

一个指向右边的 _right

一个pair类型的值

一个颜色的识别

当然这么写参数那得来个构造函数了,“细节”。

template<class K,class V>struct RBNode {	//各个节点	RBNode<K, V>* _parent;	RBNode<K, V>* _left;	RBNode<K, V>* _right;	//key-value	pair<K, V> _kv;	//颜色	COLOR _color;	RBNode(const pair<K, V>& kv = pair<K, V>())		:_parent(nullptr)		, _left(nullptr)		, _right(nullptr)		, _kv(kv)		//新申请的节点定义为RED,黑色的加入,会导致其他所有路径的黑色都遭到破坏;		, _color(RED) {	}};

对树的类进行定义:

红黑树的头节点——header

指向如图上图:具体下面再写

template<class K,class V>class RBTree {public:	//类型定义,用Node表示RBNode<K,V>	typedef RBNode<K,V> Node;	RBTree()		:_header(new Node) {		//创建空树		_header->_left = _header->_right = _header;	}private:	Node* _header;};

红黑树的插入:

当插入c节点时,为了满足性质,需要对节点进行调整,为了保证调整最优;

如果插入节点的父节点(u)和叔叔节点(u)为红色,那么只需要改变叔叔节点(u)和父节点(p)颜色为黑色,祖父节(g)为黑色即可;

当然如果祖父节点(g) 为根节点,再把其变为黑色;

不是根节点,向上调整;

【文章福利】需要C/C++ Linux服务器架构师学习资料加群812855908(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等)

结构右旋:

写一个左旋的操作,在树结构变化时可高效的改变保证结构性质;

如果

当出现情况1:

插入节点为c,当它的叔叔节点为黑色,或者叔叔节点不存在,操作相同;

记录三个节点,只有这三个节点指向变化;由图:用parent表示g,用subL表示p,用subLR表示p的右子节点即c;用pparent表示g的父节点;	//		  parent	//	subL	//			subLR		void RotateR(Node* parent) {		Node* subL = parent->_left;		Node* subLR = subL->_right;		//改变节点指向:		subL->_right = parent;		parent->_left = subLR;		//如果存在父节点存在,如果为nullptr则没有父节点;		if (subLR)			subLR->_parent = parent;		//判断根		if (parent == _header->_parent) {			_header->_parent = subL;			subL->_parent = _header;		}		//不是根		else {			Node* pparent = parent->_parent;			subL->_parent = pparent;			if (pparent->_left == parent)				pparent->_left = subL;			else				pparent->_right = subL;		}		//先要将parent的父节点赋值出去,才能改变paremt的父节点;		parent->_parent = subL;	}

结构左旋:

如图顺序(未画完全,子节点仍然有且满足性质)

记录三个节点,只有这三个节点指向变化;(操作和右旋思路相同)由图:用pparent表示p的父节点;	//			parent	//					subR	//			subRL					void RotateL(Node* parent) {		Node* subR = parent->_right;		Node* subRL = subR->_left;		subR->_left = parent;		parent->_right = subRL;		if (subRL) {			subRL->_parent = parent;		}		if (_header->_parent == parent) {			_header->_parent = subR;			subR->_parent = _header;		}		else {			Node* pparent = parent->_parent;			subR->_parent = pparent;			if (pparent->_left == parent)				pparent->_left = subR;			else				pparent->_right = subR;		}		parent->_parent = subR;	}

头节点指向的左右节点:

如图:header头节点指向最左最右的节点;

找红黑树的最左节点:

	//最左节点	Node* leftMost() {		Node* cur = _header->_parent;		while (cur && cur->_left) {			cur = cur->_left;		}		return cur;	}

找红黑树的最右节点:

//最右节点	Node* rightMost() {		Node* cur = _header->_parent;		while (cur && cur->_right) {			cur = cur->_right;		}		return cur;	}

红黑树的插入情况分析:

情况1:插入节点的父节点颜色为黑色;

处理1:直接插入;

情况2:插入节点的父节点为红色,叔叔节点存在且为红色;

处理2:插入后叔叔节点和父节点颜色变黑,祖父节点颜色变红,向上遍历查看情况;

情况3:父节点为红色,叔叔节点存在为黑色或不存在,插入节点为父节点的左子树,父节点为祖父节点的左子树;

处理3:进行结构右旋操作(RotateR);

情况4:和情况3的结构调整相反父节点为红色,叔叔节点存在为黑色或不存在,插入节点为父节点的右子树,父节点为祖父节点的右子树;

处理4:进行结构左旋操作(RotateL);

情况5:和情况6结构调整相反父节点为红色,叔叔节点存在为黑色或不存在,插入节点为父节点的左子树,父节点为祖父节点的右子树;

处理5:先以父节点为根,先右旋操作(RotateR),再以祖父节点为根,左旋操作(RotateL);

情况6:父节点为红色,叔叔节点存在为黑色或不存在,插入节点为父节点的右子树,父节点为祖父节点的左子树;

处理6:先以父节点为根,左旋操作(RotateL),再以祖父节点为根,右旋操作(RotateR);

上图:(个情况)

情况1:

情况2:

情况3:

情况4:

和情况3相反,自己画去;

情况5:

情况6相反,自己画去;

情况6

上代码:

	//插入	bool insert(const pair<K,V>& kv) {		//1.搜索树颜色		//空树:_header->parent:nullptr		if (_header->_parent == nullptr) {			//创建根节点			Node* root = new Node(kv);			_header->_parent = root;			root->_parent = _header;			_header->_left = _header->_right = root;			//根节点是黑色			root->_color = BLACK;			return true;		}				//从根节点开始搜索		//正常插入		Node* cur = _header->_parent;		Node* parent = nullptr;		while (cur) {			parent = cur;			//和key值进行比较			//kv: pair<K,V>, key:pair.first			if (cur->_kv.first == kv.first) {				//key值存在,不允许插入				return false;			}						else if (cur->_kv.first > kv.first) {			//向小的找,左子树去找				cur = cur->_left;			}			else {			//向大的找,右子树去找				cur = cur->_right;			}		}//找到了				//创建待插入节点		cur = new Node(kv);		if (parent->_kv.first > cur->_kv.first)			parent->_left = cur;//比较大小,插在左右那个位置;		else			parent->_right = cur;		cur->_parent = parent;		//2.调整结构或者修改颜色	//判断是否至少有三层;		while (cur != _header->_parent && cur->_parent->_color == RED) {			parent = cur->_parent;			Node* gfather = parent->_parent;			//可能出现情况6,情况3			if (gfather->_left == parent) {				Node* uncle = gfather->_right;				//情况2:uncle存在,并且都是红色				if (uncle && uncle->_color == RED) {					parent->_color = uncle->_color = BLACK;					gfather->_color = RED;					//继续向上更新					cur = gfather;				}				//				else {					cout << "Rotate" << endl;					//双旋结构					//情况6:					if (cur == parent->_right) {						RotateL(parent);						swap(cur, parent);					}//经过第一次左旋后,情况6 与情况3 只有cur节点和父节点的指向不一样,//经过swap两者后,接下来操作相同都为右旋;					RotateR(gfather);					parent->_color = BLACK;					gfather->_color = RED;					break;				}			}			else {				//gfather->_right=parent的情况;				//情况4,情况5,;				//处理与情况3,情况6相反;				Node* uncle = gfather->_right;				//uncle存在,且都是红色,最简				if (uncle && uncle->_color == RED) {					parent->_color = uncle->_color = BLACK;					gfather->_color = RED;					cur = gfather;				}				//情况3:uncle不存在,或者uncle存在为黑色				//双旋结构				else {					//		gfather					//	uncle    	parent  					//			 cur					//					if (cur == parent->_left) {						RotateR(parent);						swap(cur, parent);					}					RotateL(gfather);					parent->_color = BLACK;					gfather->_color = RED;					break;				}			}		}		//根节点的颜色改成黑的;		_header->_parent->_color = BLACK;		//更新header左右指向		_header->_left = leftMost();		_header->_right = rightMost();	}

中序遍历进行打印:

//对中序遍历进行封装:	void inorder() {		_inorder(_header->_parent);		cout << endl;	}	//使用递归从叶子节点开始;	//1.打印最左节点,	//2.打印此节点	//3.打印右节点	void _inorder(Node* root) {		if (root) {			_inorder(root->_left);			cout << root->_kv.first << "--->" << root->_kv.second << endl;			_inorder(root->_right);		}	}

判断是否满足红黑树的性质:

	//红黑树:	//1.根:黑色	//2.每条路径黑色个数相同	//3.红色不能连续	bool isBalance() {		if (_header->_parent == nullptr)			return true;//只有头节点也是满足红黑树		Node* root = _header->_parent;		//1.判断根节点的颜色		if (root->_color == RED)			return false;		//统计一条路劲的黑色节点个数		int bCount = 0;		Node* cur = root;		while (cur) {			if (cur->_color == BLACK)				++bCount;			cur = cur->_left;		}		//遍历每一条路径		int curBCount = 0;		return _isBalance(root, bCount, curBCount);	}	bool _isBalance(Node* root, int& bCount, int curBCount) {		//当root为空,一条路径遍历结束		if(root == nullptr){		//判断黑色节点个数是否相同		if (bCount != curBCount)			return false;		else			return true;		}		//判断是否为黑节点		if (root->_color == BLACK)			++curBCount;		//判断红色节点是否有连续		if (root->_parent && root->_color == RED			&& root->_parent->_color == RED) {			cout << "data: " << root->_kv.first << "--->" << root->_kv.second << endl;			return false;		}		return _isBalance(root->_left, bCount, curBCount) 			&& _isBalance(root->_right,bCount, curBCount);	}

完整代码如下:可直接调试

#include<iostream>#include<iostream>#include<utility>using namespace std;//设置颜色属性enum COLOR {	BLACK,	RED};template<class K,class V>struct RBNode {	//typedef bool color;	//各个节点	RBNode<K, V>* _parent;	RBNode<K, V>* _left;	RBNode<K, V>* _right;	//key-value	pair<K, V> _kv;	//颜色	COLOR _color;	RBNode(const pair<K, V>& kv = pair<K, V>())		:_parent(nullptr)		, _left(nullptr)		, _right(nullptr)		, _kv(kv)		, _color(RED) {	}};template<class K,class V>class RBTree {public:	//类型定义	typedef RBNode<K,V> Node;	RBTree()		:_header(new Node) {		//创建空树		_header->_left = _header->_right = _header;	}	//插入	bool insert(const pair<K,V>& kv) {		//1.搜索树颜色		//空树:_header->parent:nullptr		if (_header->_parent == nullptr) {			//创建根节点			Node* root = new Node(kv);			_header->_parent = root;			root->_parent = _header;			_header->_left = _header->_right = root;			//根节点是黑色			root->_color = BLACK;			return true;		}		//从根节点开始搜索		//正常插入		Node* cur = _header->_parent;		Node* parent = nullptr;		while (cur) {			parent = cur;			//和key值进行比较			//kv: pair<K,V>, key:pair.first			if (cur->_kv.first == kv.first) {				//key值不允许重复				return false;			}			else if (cur->_kv.first > kv.first) {				cur = cur->_left;			}			else {				cur = cur->_right;			}		}		//创建待插入节点		cur = new Node(kv);		if (parent->_kv.first > cur->_kv.first)			parent->_left = cur;		else			parent->_right = cur;		cur->_parent = parent;		//2.修改颜色或者调整结构		while (cur != _header->_parent && cur->_parent->_color == RED) {			parent = cur->_parent;			Node* gfather = parent->_parent;			if (gfather->_left == parent) {				Node* uncle = gfather->_right;				//1.uncle存在,并且都是红色				if (uncle && uncle->_color == RED) {					parent->_color = uncle->_color = BLACK;					gfather->_color = RED;					//继续更新					cur = gfather;				}								else {					cout << "Rotate" << endl;					//双旋结构					if (cur == parent->_right) {						RotateL(parent);						swap(cur, parent);					}					RotateR(gfather);					parent->_color = BLACK;					gfather->_color = RED;					break;				}			}			else {				//gfather->_right=parent;				Node* uncle = gfather->_right;				//uncle存在,且都是红色,最简				if (uncle && uncle->_color == RED) {					parent->_color = uncle->_color = BLACK;					gfather->_color = RED;					cur = gfather;				}				//uncle不存在,或者uncle存在为黑色				//双旋结构				else {					//		gfather					//	uncle    	parent  					//			 cur					//					if (cur == parent->_left) {						RotateR(parent);						swap(cur, parent);					}					RotateL(gfather);					parent->_color = BLACK;					gfather->_color = RED;					break;				}			}		}		//根节点的颜色改成黑的;		_header->_parent->_color = BLACK;		//更新header左右指向		_header->_left = leftMost();		_header->_right = rightMost();	}	//			parent	//					subR	//			subRL					void RotateL(Node* parent) {		Node* subR = parent->_right;		Node* subRL = subR->_left;		subR->_left = parent;parent->_right = subRL;if (subRL) {	subRL->_parent = parent;}if (_header->_parent == parent) {	_header->_parent = subR;	subR->_parent = _header;}else {	Node* pparent = parent->_parent;	subR->_parent = pparent;	if (pparent->_left == parent)		pparent->_left = subR;	else		pparent->_right = subR;}parent->_parent = subR;	}	//		  parent	//		subL	//			subLR		void RotateR(Node* parent) {		Node* subL = parent->_left;		Node* subLR = subL->_right;		subL->_right = parent;		parent->_left = subLR;		if (subLR)			subLR->_parent = parent;		//判断根		if (parent == _header->_parent) {			_header->_parent = subL;			subL->_parent = _header;		}		//不是根		else {			Node* pparent = parent->_parent;			subL->_parent = pparent;			if (pparent->_left == parent)				pparent->_left = subL;			else				pparent->_right = subL;		}		parent->_parent = subL;	}	//最左节点	Node* leftMost() {		Node* cur = _header->_parent;		while (cur && cur->_left) {			cur = cur->_left;		}		return cur;	}	//最右节点	Node* rightMost() {		Node* cur = _header->_parent;		while (cur && cur->_right) {			cur = cur->_right;		}		return cur;	}	void inorder() {		_inorder(_header->_parent);		cout << endl;	}	void _inorder(Node* root) {		if (root) {			_inorder(root->_left);			cout << root->_kv.first << "--->" << root->_kv.second << endl;			_inorder(root->_right);		}	}	//红黑树:	//1.根:黑色	//2.每条路径黑色个数相同	//3.红色不能连续	bool isBalance() {		if (_header->_parent == nullptr)			return true;		Node* root = _header->_parent;		if (root->_color == RED)			return false;		//统计一条路劲的黑色节点个数		int bCount = 0;		Node* cur = root;		while (cur) {			if (cur->_color == BLACK)				++bCount;			cur = cur->_left;		}		//遍历每一条路径		int curBCount = 0;		return _isBalance(root, bCount, curBCount);	}	bool _isBalance(Node* root, int& bCount, int curBCount) {		//当root为空,一条路径遍历结束		if(root == nullptr){		//判断黑色节点个数是否相同		if (bCount != curBCount)			return false;		else			return true;		}		//判断是否为黑节点		if (root->_color == BLACK)			++curBCount;		//判断红色节点是否有连续		if (root->_parent && root->_color == RED			&& root->_parent->_color == RED) {			cout << "data: " << root->_kv.first << "--->" << root->_kv.second << endl;			return false;		}		return _isBalance(root->_left, bCount, curBCount) 			&& _isBalance(root->_right,bCount, curBCount);	}private:	Node* _header;};void test() 	{	RBTree<int, int> rbt;	int n;	cin >> n;	for (int i = n; i > 0; --i) {		rbt.insert(make_pair(i, i));	}	rbt.inorder();	cout << rbt.isBalance();}int main() {	test();	return 0;} 

标签: #nginx红黑树用在什么地方