龙空技术网

亚马逊云科技推出“智能湖仓”架构

中关村在线 343

前言:

此时我们对“apachejclouds实例”大致比较着重,小伙伴们都需要学习一些“apachejclouds实例”的相关内容。那么小编同时在网络上汇集了一些关于“apachejclouds实例””的相关文章,希望同学们能喜欢,大家一起来学习一下吧!

中关村在线消息,2021年6月24日,亚马逊云科技针对数据及数据分析等服务持续发力,推出“智能湖仓”架构,据悉,从2021年初至今,亚马逊已在由光环新网和西云数据运营的中国区域总共上线了近40项相关服务和特性。亚马逊云科技“智能湖仓”架构将亚马逊云科技全面而深入的数据服务无缝集成,打通了数据湖和数据仓库之间数据移动和访问,并且进一步实现了数据在数据湖、数据仓库,以及在数据查询、数据分析、机器学习等各类专门构建的服务之间按需移动,从而形成统一且连续的整体,满足各种实际业务场景下的不同需求。亚马逊云科技“智能湖仓”架构具有灵活扩展、专门构建、数据融合、深度智能和开源开放五大特点,涵盖数据源、数据摄取层、存储层、目录层、数据处理层和消费层六层架构,可轻松应对海量业务数据,充分挖掘数据价值。

亚马逊云科技大中华区云服务产品部总经理顾凡表示,“大数据对于现代商业的影响不言而喻。用户期盼从数据中获得洞察,但同时也面临数据存储、处理和分析等方面的诸多挑战,例如数据指数级增长、数据来源不一、数据类型多元化等等。面对细分的应用场景,目前市面上单一、通用的数据解决方案在性能上会有所妥协,很难满足客户的真实需求,用户亟需融合了易用、易扩展、高性能、专门构建、安全及智能等特性于一体的新一代数据管理架构。亚马逊云科技‘智能湖仓’架构在打通数据湖和数据仓库的基础上,进一步将各种数据服务无缝集成,确保数据在不同服务之间顺畅流动,致力于帮助客户尽可能最大程度地提高其数据价值,加速创新,并成为数据驱动型组织。“

据悉,企业增长咨询公司沙利文中国联合头豹研究院此前发布了《2020年中国数据管理解决方案市场报告》。该报告针对成长指数(功能成长)、创新指数(能力创新)、基本指数(基本数据分析能力)三大维度,对竞争主体旗下数据管理解决方案竞争力进行了评估。亚马逊云科技综合实力排名第一,且三项指数名列第一。

亚马逊云科技“智能湖仓”架构实现“数据入云,融合智能”

亚马逊云科技“智能湖仓”架构以Amazon Simple Storage Service(Amazon S3)为基础构建数据湖,作为中央存储库,围绕数据湖集成专门的“数据服务环”,包括数据仓库、机器学习、大数据处理、日志分析等数据服务,然后再利用Amazon Lake Formation、Amazon Glue、Amazon Athena、Amazon Redshift Spectrum等工具,实现数据湖的构建、数据的移动和管理等。亚马逊云科技“智能湖仓”架构具有以下五个特点。

灵活扩展,安全可靠。亚马逊云科技“智能湖仓”架构用Amazon S3作为数据湖的存储基础,企业可根据不断变化的需求,灵活扩展或缩减存储资源。Amazon S3可达到 99.999999999%(11 个 9)的数据持久性,且具有强大的安全性、合规性和审计功能。

专门构建,极致性能。为了满足企业不同的数据分析需求,亚马逊云科技提供专门构建的数据分析服务,包括交互式查询服务Amazon Athena、云上大数据平台Amazon EMR、日志分析服务Amazon Elasticsearch Service、Amazon Kinesis、云数据仓库Amazon Redshift等。企业在使用过程中不必在性能、规模或成本之间做出妥协。其中AQUA(分布式硬件加速缓存)使 Redshift 查询的运行速度比其他其他云数据仓库最高快 10 倍;Amazon EMR运行大数据处理及分析服务的成本不到传统本地解决方案的一半,但其速度比标准Apache Spark快 3 倍以上。

数据融合,统一治理。亚马逊云科技“智能湖仓”架构不止是打通了数据湖、数据仓库,还进一步将数据湖、数据仓库以及所有其它数据服务组成统一且连续的整体。在实际应用场景中,数据需要在这些服务与数据存储方案之间,以及服务与服务之间按需来回移动,跨服务访问。亚马逊云科技“智能湖仓”架构降低了数据融合与数据共享时统一安全管控和数据治理的难度。其中,Amazon Glue提供数据无缝流动能力,Amazon Lake Formation提供了快速构建湖仓、简化安全与管控的全面数据管理能力。

敏捷分析,深度智能。亚马逊云科技将数据、数据分析服务与机器学习服务无缝集成,为企业提供更智能的服务。例如Amazon Aurora ML、Amazon Redshift ML、Neptune ML等,数据库开发者只需使用熟悉的 SQL 语句,就能进行机器学习操作;Amazon Glue、Amazon Athena ML、Amazon QuickSight Q等,可以帮助企业使用熟悉的技术,甚至自然语言来使用机器学习,帮助企业利用数据做出更好的决策。还可以通过机器学习服务Amazon Sage Maker、个性化推荐服务Amazon Personalize等挖掘数据智能。

拥抱开源,开放共赢。亚马逊云科技“智能湖仓”架构中的关键组件如Amazon EMR、Amazon Elasticserach Service、Amazon MSK的核心都基于开源代码,接口与开源完全兼容,无需改变任何代码就可以实现迁移,也兼容主流的管理工具。OpenSearch 基于开放的Apache2.0 授权,其代码完全开放,可以免费下载使用并获得企业级的功能。这些服务允许企业在转型过程中,以非常低的改造成本向云端迁移。

亚马逊云科技赋能企业重塑大数据

目前在中国,TCL、丰田互联、欣和、德比软件、安克创新、启元世界等各行业客户,正在采用亚马逊云科技数据相关服务,开展数据治理及数据价值挖掘。其中, TCL基于亚马逊云科技“智能湖仓”架构搭建的解决方案,将传统的数据库、数据仓库与数据湖打通,消除了数据孤岛,让全品类IoT设备的数据和业务系统实现了互联互通,海外业务与国内业务实现了数据统一。TCL使用了亚马逊云科技广泛的云服务,包括:使用Amazon S3构建数据湖,通过大数据分析服务Amazon EMR、Amazon Redshift和机器学习服务获得数据洞察等。通过使用亚马逊云科技专门构建的数据分析服务,之前需要一周才能完成的复杂数据报表,现在仅需要1-2小时;每天运行300个以上的作业产生 200多个BI报表,为运营和数字化营销提供有力支撑。

启元世界(北京)信息技术服务有限公司公司拥有深度学习、强化学习等自主研发的核心技术和产品,以SaaS的形式,为国内多家知名的游戏公司提供虚拟玩家陪玩、游戏商品推荐、关卡数值设计、游戏内容生成等服务。启元世界使用了亚马逊云科技全栈的数据分析服务进行高效开发部署,保障业务快速稳定发展。启元世界CTO龙海涛表示,“作为一家领先的AI公司,我们希望把更多精力聚焦在算法迭代与产品打磨,我们需要成熟、稳定、免运维的大数据托管服务。亚马逊云科技智能湖仓通过数据的融合,专门构建的分析工具,可靠高效地支撑了我们敏捷的业务迭代,其中Amazon Kinesis实现了分钟级部署,并承载百万QPS(每秒查询率)流数据;Amazon EMR、Amazon Managed Workflows for Apache Airflow使批处理运行的时间减少了80%,运营总成本下降了50%;Amazon Glue 、Amazon Athena、Amazon Quick Sight等服务实现了即席查询秒级响应。”

上海驰骛(ChiefClouds)信息科技有限公司,是国内消费者数据营销平台供应商,为企业搭建消费者数据平台(CDP),以此为基础构建覆盖数字媒体和阵地运营、CRM、智慧导购等场景的全渠道和全链路消费者运营体系。驰骛科技创始人兼CEO程华奕表示,“作为企业级数据管理平台的实践者,我们非常认可亚马逊云科技的智能湖仓架构。以Amazon S3为核心的数据基础平台,让我们在服务客户时,在数据安全性、可靠性、性能和扩展性等方面都没有后顾之忧。亚马逊强大的数据分析管理工具组合,让我们能够对各种数据处理和分析游刃有余,快捷、高效地利用机器学习挖掘数据智能,服务于客户的业务创新。“

亚马逊云科技半年内在中国区域新增的近40项数据及数据分析相关的服务及特性,进一步强化了亚马逊云科技数据以及数据分析相关服务组合。其中,AmazonGlue 2.0 版本将作业启动时间缩短了10倍,并且可提供1分钟最短计费持续时间,AmazonAthena 2.0 包括多项性能改进和新功能,Amazon Lake Formation在宁夏区域推出(去年底在北京区域推出),Amazon Redshift、Amazon EMR、Amazon Elasticsearch Service、Amazon Sage Maker等均发布了诸多新特性。

(7713517)

标签: #apachejclouds实例