龙空技术网

数据结构-树(二叉树基本实现C++)

changlvso 59

前言:

如今大家对“数据结构二叉树编程题”都比较讲究,姐妹们都想要剖析一些“数据结构二叉树编程题”的相关资讯。那么小编同时在网上网罗了一些有关“数据结构二叉树编程题””的相关文章,希望各位老铁们能喜欢,你们快快来学习一下吧!

​树形结构是一种重要的非线性数据结构。其中树和二叉树最为常用,直观看来树是以分支关系定义的层次结构。树形结构是我们平时比较熟悉的,比如文件夹目录、公司组织关系等。在计算机领域也得到广泛的应用,编译程序就是以树来表示源程序的语法结构。

图1-树形结构

二叉树是一种特殊的树形结构,他的特点是每个节点至多只有两颗子树,并且,子树有左右之分,顺序不能颠倒。

图2-二叉树结构

树形结构里边还有很多的知识点,我不在这里做文字上的解释,这里只是针对二叉树的相关特点,用C++分别实现基于数组和基于链表两种方式的二叉树,以及实现二叉树的三种遍历方式。

基于数组的二叉树基本实现:

class Tree{public:  explicit Tree(int size, int* pRoot){    m_iSize = size;    m_pTree = new int[m_iSize];    memset(m_pTree, 0, sizeof(int)*m_iSize);    m_pTree[0] = *pRoot;  }  ~Tree()  {    delete[]m_pTree;    m_pTree = NULL;  }  int* SearchNode(int index){    if (index<0 && index>m_iSize)    {      return NULL;    }​    return &m_pTree[index];  }​  //direction 1:left 2:right  bool AddNode(int index, int direction, int* pNode){    if (index<0 && index>m_iSize)    {      return false;    }​    if (m_pTree[index] == 0)    {      return false;    }​    if (index * 2 + direction > m_iSize)    {      return false;    }​    m_pTree[index * 2 + direction] = *pNode;    return true;  }​  bool DeleteNode(int index, int* pNode){    if (index<0 && index>m_iSize)    {      return false;    }​    *pNode = m_pTree[index];    m_pTree[index] = 0;    return true;  }  void Traverse(){    for (int i = 0; i < m_iSize; i++)    {      cout << m_pTree[i] << " ";    }    cout << endl;  }private:  int* m_pTree;  int m_iSize;};

基于链表的二叉树实现:

#ifndef _CTREE_H_#define _CTREE_H_#include<iostream>​using namespace std;class TreeNode{public:  int index; //坐标  char data; //数据  TreeNode *pLChild; //左节点  TreeNode *pRChild; //右节点  TreeNode *pParent; //父节点public:  TreeNode() : index(0),     data('0'),     pLChild(NULL),     pRChild(NULL),     pParent(NULL) {}​  TreeNode(int iNodeIndex, char val) : index(iNodeIndex),     data(val),     pLChild(NULL),     pRChild(NULL),     pParent(NULL) {}​  ~TreeNode()  {    //if (pLChild)    //{    //  delete pLChild;    //  pLChild = NULL;    //}​    //if (pRChild)    //{    //  delete pRChild;    //  pRChild = NULL;    //}​    //if (pParent)    //{    //  delete pParent;    //  pParent = NULL;    //}  }​  //TreeNode(const TreeNode& node)  //{  //  index = node.index;  //  data = node.data;​  //  delete pLChild;  //  if (node.pLChild)  //  {  //    pLChild = new TreeNode(node.pLChild->data, node.pLChild->index);  //  }​  //  delete pRChild;  //  if (node.pRChild)  //  {  //    pRChild = new TreeNode(node.pRChild->data, node.pRChild->index);  //  }​  //  delete pParent;  //  if (node.pParent)  //  {  //    pParent = new TreeNode(node.pParent->data, node.pParent->index);  //  }  //}​  //TreeNode& operator=(const TreeNode& node)   //{  //  if (this == &node)  //  {  //    return *this;  //  }​  //  index = node.index;  //  data = node.data;​  //  delete pLChild;  //  if (node.pLChild)  //  {  //    pLChild = new TreeNode(node.pLChild->data, node.pLChild->index);  //  }  //  //  delete pRChild;  //  if (node.pRChild)  //  {  //    pRChild = new TreeNode(node.pRChild->data, node.pRChild->index);  //  }​  //  delete pParent;  //  if (node.pParent)  //  {  //    pParent = new TreeNode(node.pParent->data, node.pParent->index);  //  }​  //  return *this;  //}​  TreeNode* SearchNode(int iNodeIndex){    if (index == iNodeIndex)    {      return this;    }​    TreeNode *temp = NULL;    if (pLChild)    {      if (pLChild->index == iNodeIndex)      {        return pLChild;      }      else      {        temp = pLChild->SearchNode(iNodeIndex);        if (temp)        {          return temp;        }      }    }    if (pRChild)    {      if (pRChild->index == iNodeIndex)      {        return pRChild;      }      else      {        temp = pRChild->SearchNode(iNodeIndex);        if (temp)        {          return temp;        }      }​    }​    return NULL;  }​  void DeleteNode(){    if (pLChild != NULL)    {      pLChild->DeleteNode();    }​    if (pRChild != NULL)    {      pRChild->DeleteNode();    }​    if (pParent != NULL)    {      if (this == pParent->pLChild)        pParent->pLChild = NULL;      if (this == pParent->pRChild)        pParent->pRChild = NULL;    }​    delete this;  }​  //先序遍历 根左右  void PreOrderTraversal(){    cout << data << " ";​    if (pLChild)    {      pLChild->PreOrderTraversal();    }​    if (pRChild)    {      pRChild->PreOrderTraversal();    }  }​  //中序遍历 左根右  void InOrderTraversal(){    if (pLChild)    {      pLChild->InOrderTraversal();    }​    cout << data << " ";​    if (pRChild)    {      pRChild->InOrderTraversal();    }  }​  //后序遍历 左右根  void PostOrderTraversal(){    if (pLChild)    {      pLChild->PostOrderTraversal();    }​    if (pRChild)    {      pRChild->PostOrderTraversal();    }​    cout << data << " ";  }​  //禁止拷贝、赋值private:  TreeNode(const TreeNode& node);  TreeNode& operator=(const TreeNode& node);};​//基于链表的二叉树基本实现和遍历class CTree{public:  CTree(TreeNode *pNode = NULL)  {    //创建树默认先创建根节点    m_pRoot = new TreeNode();    if (!m_pRoot)    {      throw "根节点申请内存失败";      return;    }​    if (pNode)    {      m_pRoot->index = 0;      m_pRoot->data = pNode->data;    }    else    {      m_pRoot->index = 0;      m_pRoot->data = '0';    }  }​  ~CTree()  {    m_pRoot->DeleteNode();  }​  TreeNode* SearchNode(int index){    return m_pRoot->SearchNode(index);  }​  bool AddNode(int index, int direction, TreeNode *pNode){    if (!pNode)    {      cout << "插入失败!新增的节点值为空。" << endl;      return false;    }​    TreeNode *temp = SearchNode(index);    if (!temp)    {      cout << pNode->data << "插入失败!找不到传入下标对应的父节点。" << endl;      return false;    }​    TreeNode *node = new TreeNode();    if (!node)    {      cout << pNode->data << "插入失败!新的节点申请内存失败。" << endl;      return false;    }​    node->index = pNode->index;    node->data = pNode->data;    node->pParent = temp;​    if (1 == direction)    {      temp->pLChild = node;    }    else if (2 == direction)    {      temp->pRChild = node;    }    else    {      cout << pNode->data << "插入失败!。direction参数错误:1为左节点,2为右节点" << endl;    }    return true;  }​  bool DeleteNode(int index, TreeNode *pNode){    TreeNode *temp = SearchNode(index);    if (!temp)    {      cout << "删除失败!找不到传入下标对应的节点。" << endl;      return false;    }​    if (pNode)    {      pNode->index = temp->index;      pNode->data = temp->data;    }​    temp->DeleteNode();​    return true;  }​  //先序遍历-递归  void Recursive_PreOrderTraversal(){    m_pRoot->PreOrderTraversal();  }​  //中序遍历-递归  void Recursive_InOrderTraversal(){    m_pRoot->InOrderTraversal();  }​  //后序遍历-递归  void Recursive_PostOrderTraversal(){    m_pRoot->PostOrderTraversal();  }​  //先序遍历-非递归  void PreOrderTraversal(){    int stackTop = -1;    TreeNode* nodeStack[10];    TreeNode *pMove = /*new TreeNode(m_pRoot->index, m_pRoot->data)*/m_pRoot;    while (stackTop != -1 || pMove)    {      while (pMove)      {        cout << pMove->data << " ";        nodeStack[++stackTop] = pMove;        pMove = pMove->pLChild;      }​      if (stackTop != -1)      {        pMove = nodeStack[stackTop];        stackTop--;        pMove = pMove->pRChild;      }    }  }​​  //中序遍历-非递归  void InOrderTraversal(){    int stackTop = -1;    TreeNode* nodeStack[10];    TreeNode *pMove = /*new TreeNode(m_pRoot->index, m_pRoot->data)*/m_pRoot;    while (stackTop != -1 || pMove)    {      //      while (pMove)      {        nodeStack[++stackTop] = pMove;        pMove = pMove->pLChild;      }​      if (stackTop != -1)      {        pMove = nodeStack[stackTop--];        cout << pMove->data << " ";        pMove = pMove->pRChild;      }    }  }​  //后序遍历-非递归  void PostOrderTraversal(){    int stackTop = -1;    TreeNode* nodeStack[10];    TreeNode* pMove = /*new TreeNode(m_pRoot->index, m_pRoot->data)*/m_pRoot;    TreeNode* pLastVisit = NULL;​    while (pMove)    {      nodeStack[++stackTop] = pMove;      pMove = pMove->pLChild;    }    while (stackTop != -1)    {      pMove = nodeStack[stackTop--];      if (pMove->pRChild == NULL || pMove->pRChild == pLastVisit)      {        cout << pMove->data << " ";        pLastVisit = pMove;      }      else      {        nodeStack[++stackTop] = pMove;        pMove = pMove->pRChild;        while (pMove)        {          nodeStack[++stackTop] = pMove;          pMove = pMove->pLChild;        }      }    }​  }private:  TreeNode *m_pRoot; //根节点};​#endif // !_CTREE_H_

测试二叉树结构图:

图3-测试二叉树结构

测试主函数main.cpp实现:

int main(int argc, char**argv){  TreeNode nodeA(0, 'A');  TreeNode nodeB(1, 'B');  TreeNode nodeC(2, 'C');  TreeNode nodeD(3, 'D');  TreeNode nodeE(4, 'E');  TreeNode nodeF(6, 'F');  TreeNode nodeG(9, 'G');​  CTree *tree = new CTree(&nodeA);  tree->AddNode(0, 1, &nodeB);  tree->AddNode(0, 2, &nodeC);  tree->AddNode(1, 1, &nodeD);  tree->AddNode(1, 2, &nodeE);  tree->AddNode(2, 2, &nodeF);  tree->AddNode(4, 1, &nodeG);​  cout << "递归遍历: " << endl;  tree->Recursive_PreOrderTraversal();  cout << endl;  tree->Recursive_InOrderTraversal();  cout << endl;  tree->Recursive_PostOrderTraversal();  cout << endl;​  cout << "非递归遍历: " << endl;  tree->PreOrderTraversal();  cout << endl;  tree->InOrderTraversal();  cout << endl;  tree->PostOrderTraversal();  cout << endl;​  delete tree;​  system("pause");  return 0;}

测试结果:

图4-测试结果

--|END|--

标签: #数据结构二叉树编程题 #树状二叉树的算法 #树状二叉树的算法有哪些 #数据结构c语言二叉树的建立