龙空技术网

使用Pytorch搭建GoogLeNet网络

cztAI 135

前言:

此时各位老铁们对“pytorch ner”大体比较着重,朋友们都想要知道一些“pytorch ner”的相关文章。那么小编在网络上网罗了一些关于“pytorch ner””的相关文章,希望朋友们能喜欢,咱们一起来了解一下吧!

1 爬取奥特曼

get_data.py

import requestsimport urllib.parse as upimport jsonimport timeimport osmajor_url = ';headers = {'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.135 Safari/537.36'}def pic_spider(kw, path, page = 10):    path = os.path.join(path, kw)    if not os.path.exists(path):        os.mkdir(path)    if kw != '':        for num in range(page):            data = {                "tn": "resultjson_com",                "logid": "11587207680030063767",                "ipn": "rj",                "ct": "201326592",                "is": "",                "fp": "result",                "queryWord": kw,                "cl": "2",                "lm": "-1",                "ie": "utf-8",                "oe": "utf-8",                "adpicid": "",                "st": "-1",                "z": "",                "ic": "0",                "hd": "",                "latest": "",                "copyright": "",                "word": kw,                "s": "",                "se": "",                "tab": "",                "width": "",                "height": "",                "face": "0",                "istype": "2",                "qc": "",                "nc": "1",                "fr": "",                "expermode": "",                "force": "",                "pn": num*30,                "rn": "30",                "gsm": oct(num*30),                "1602481599433": ""            }            url = major_url + up.urlencode(data)            i = 0            pic_list = []            while i < 5:                try:                    pic_list = requests.get(url=url, headers=headers).json().get('data')                    break                except:                    print('网络不好,正在重试...')                    i += 1                    time.sleep(1.3)            for pic in pic_list:                url = pic.get('thumbURL', '') # 有的没有图片链接,就设置成空                if url == '':                    continue                name = pic.get('fromPageTitleEnc')                for char in ['?', '\\', '/', '*', '"', '|', ':', '<', '>']:                    name = name.replace(char, '') # 将所有不能出现在文件名中的字符去除掉                type = pic.get('type', 'jpg') # 找到图片的类型,若没有找到,默认为 jpg                pic_path = (os.path.join(path, '%s.%s') % (name, type))                print(name, '已完成下载')                if not os.path.exists(pic_path):                    with open(pic_path, 'wb') as f:                        f.write(requests.get(url = url, headers = headers).content)cwd = os.getcwd() # 当前路径        file1 = 'flower_data/flower_photos'file2 = '数据/下载数据'save_path = os.path.join(cwd,file2)#flower_class = [cla for cla in os.listdir(file1) if ".txt" not in cla]#lists = ['猫','哈士奇','燕子','恐龙','鹦鹉','老鹰','柴犬','田园犬','咖啡猫','老虎','狮子','哥斯拉','奥特曼']lists = ['佐菲','初代','赛文','杰克','艾斯','泰罗','奥特之父','奥特之母','爱迪','尤莉安','雷欧','阿斯特拉','奥特之王','葛雷','帕瓦特','奈克斯特','奈克瑟斯','哉阿斯','迪加','戴拿','盖亚(大地)','阿古茹(海洋)','高斯(慈爱)','杰斯提斯(正义)','雷杰多(高斯与杰斯提斯的合体)','诺亚(奈克斯特的最终形态)','撒加','奈欧斯','赛文21','麦克斯','杰诺','梦比优斯','希卡利','赛罗','赛文X']for list in lists:    if not os.path.exists(save_path):        os.mkdir(save_path)    pic_spider(list+'奥特曼',save_path, page = 10)print("lists_len: ",len(lists))

# 2 划分数据集

训练集 train :80%

验证集 val :10%

测试集 predict :10%

spile_data.py

import osfrom shutil import copyimport randomimport cv2def mkfile(file):    if not os.path.exists(file):        os.makedirs(file)#file = 'flower_data/flower_photos'file = '数据/下载数据'flower_class = [cla for cla in os.listdir(file) if ".txt" not in cla]#mkfile('flower_data/train')mkfile('数据/train')for cla in flower_class:    #mkfile('flower_data/train/'+cla)    mkfile('数据/train/'+cla)#mkfile('flower_data/val')mkfile('数据/val')for cla in flower_class:    #mkfile('flower_data/val/'+cla)    mkfile('数据/val/'+cla)mkfile('数据/predict')for cla in flower_class:    #mkfile('flower_data/predict/'+cla)    mkfile('数据/predict/'+cla)split_rate = 0.1for cla in flower_class:    images = []    cla_path = file + '/' + cla + '/'    # 过滤jpg和png    images1 = [cla1 for cla1 in os.listdir(cla_path) if ".jpg" in cla1]    images2 = [cla1 for cla1 in os.listdir(cla_path) if ".png" in cla1]+images1    # 去掉小于256的图    for image in images2:        img = cv2.imread(cla_path+image)        if img.shape[0]>255 and img.shape[1]>255:            images.append(image)    #images = os.listdir(cla_path)     num = len(images)                #eval_index = random.sample(images, k=int(num*split_rate))    for index, image in enumerate(images):        if index<0.1*num:            image_path = cla_path +'/'+ image            new_path = '数据/val/' + cla            copy(image_path, new_path)        elif index<0.2*num:            image_path = cla_path + image            new_path = '数据/predict/' + cla            copy(image_path, new_path)        else:            image_path = cla_path + image            new_path = '数据/train/' + cla            copy(image_path, new_path)        print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing bar    print()print("processing done!")

3 GoogLeNet model

model.py

import warningsfrom collections import namedtupleimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch import Tensor#from .utils import load_state_dict_from_urlfrom typing import Optional, Tuple, List, Callable, Any__all__ = ['GoogLeNet', 'googlenet', "GoogLeNetOutputs", "_GoogLeNetOutputs"]model_urls = {    # GoogLeNet ported from TensorFlow    'googlenet': ';,}GoogLeNetOutputs = namedtuple('GoogLeNetOutputs', ['logits', 'aux_logits2', 'aux_logits1'])GoogLeNetOutputs.__annotations__ = {'logits': Tensor, 'aux_logits2': Optional[Tensor],                                    'aux_logits1': Optional[Tensor]}# Script annotations failed with _GoogleNetOutputs = namedtuple ...# _GoogLeNetOutputs set here for backwards compat_GoogLeNetOutputs = GoogLeNetOutputsdef googlenet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> "GoogLeNet":    r"""GoogLeNet (Inception v1) model architecture from    `"Going Deeper with Convolutions" <;`_.    Args:        pretrained (bool): If True, returns a model pre-trained on ImageNet        progress (bool): If True, displays a progress bar of the download to stderr        aux_logits (bool): If True, adds two auxiliary branches that can improve training.            Default: *False* when pretrained is True otherwise *True*        transform_input (bool): If True, preprocesses the input according to the method with which it            was trained on ImageNet. Default: *False*    """    if pretrained:        if 'transform_input' not in kwargs:            kwargs['transform_input'] = True        if 'aux_logits' not in kwargs:            kwargs['aux_logits'] = False        if kwargs['aux_logits']:            warnings.warn('auxiliary heads in the pretrained googlenet model are NOT pretrained, '                          'so make sure to train them')        original_aux_logits = kwargs['aux_logits']        kwargs['aux_logits'] = True        kwargs['init_weights'] = False        model = GoogLeNet(**kwargs)        #state_dict = load_state_dict_from_url(model_urls['googlenet'],progress=progress)        #model.load_state_dict(state_dict)                model_weight_path = "./googlenet-1378be20.pth"        model.load_state_dict(torch.load(model_weight_path))        if not original_aux_logits:            model.aux_logits = False            model.aux1 = None  # type: ignore[assignment]            model.aux2 = None  # type: ignore[assignment]        return model    return GoogLeNet(**kwargs)class GoogLeNet(nn.Module):    __constants__ = ['aux_logits', 'transform_input']    def __init__(        self,        num_classes: int = 1000,        aux_logits: bool = True,        transform_input: bool = False,        init_weights: Optional[bool] = None,        blocks: Optional[List[Callable[..., nn.Module]]] = None    ) -> None:        super(GoogLeNet, self).__init__()        if blocks is None:            blocks = [BasicConv2d, Inception, InceptionAux]        if init_weights is None:            warnings.warn('The default weight initialization of GoogleNet will be changed in future releases of '                          'torchvision. If you wish to keep the old behavior (which leads to long initialization times'                          ' due to scipy/scipy#11299), please set init_weights=True.', FutureWarning)            init_weights = True        assert len(blocks) == 3        conv_block = blocks[0]        inception_block = blocks[1]        inception_aux_block = blocks[2]        self.aux_logits = aux_logits        self.transform_input = transform_input        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)        self.conv2 = conv_block(64, 64, kernel_size=1)        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)        if aux_logits:            self.aux1 = inception_aux_block(512, num_classes)            self.aux2 = inception_aux_block(528, num_classes)        else:            self.aux1 = None  # type: ignore[assignment]            self.aux2 = None  # type: ignore[assignment]        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))        self.dropout = nn.Dropout(0.2)        self.fc = nn.Linear(1024, num_classes)        if init_weights:            self._initialize_weights()    def _initialize_weights(self) -> None:        for m in self.modules():            if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):                import scipy.stats as stats                X = stats.truncnorm(-2, 2, scale=0.01)                values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)                values = values.view(m.weight.size())                with torch.no_grad():                    m.weight.copy_(values)            elif isinstance(m, nn.BatchNorm2d):                nn.init.constant_(m.weight, 1)                nn.init.constant_(m.bias, 0)    def _transform_input(self, x: Tensor) -> Tensor:        if self.transform_input:            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)        return x    def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:        # N x 3 x 224 x 224        x = self.conv1(x)        # N x 64 x 112 x 112        x = self.maxpool1(x)        # N x 64 x 56 x 56        x = self.conv2(x)        # N x 64 x 56 x 56        x = self.conv3(x)        # N x 192 x 56 x 56        x = self.maxpool2(x)        # N x 192 x 28 x 28        x = self.inception3a(x)        # N x 256 x 28 x 28        x = self.inception3b(x)        # N x 480 x 28 x 28        x = self.maxpool3(x)        # N x 480 x 14 x 14        x = self.inception4a(x)        # N x 512 x 14 x 14        aux1: Optional[Tensor] = None        if self.aux1 is not None:            if self.training:                aux1 = self.aux1(x)        x = self.inception4b(x)        # N x 512 x 14 x 14        x = self.inception4c(x)        # N x 512 x 14 x 14        x = self.inception4d(x)        # N x 528 x 14 x 14        aux2: Optional[Tensor] = None        if self.aux2 is not None:            if self.training:                aux2 = self.aux2(x)        x = self.inception4e(x)        # N x 832 x 14 x 14        x = self.maxpool4(x)        # N x 832 x 7 x 7        x = self.inception5a(x)        # N x 832 x 7 x 7        x = self.inception5b(x)        # N x 1024 x 7 x 7        x = self.avgpool(x)        # N x 1024 x 1 x 1        x = torch.flatten(x, 1)        # N x 1024        x = self.dropout(x)        x = self.fc(x)        # N x 1000 (num_classes)        return x, aux2, aux1    @torch.jit.unused    def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:        if self.training and self.aux_logits:            return _GoogLeNetOutputs(x, aux2, aux1)        else:            return x   # type: ignore[return-value]    def forward(self, x: Tensor) -> GoogLeNetOutputs:        x = self._transform_input(x)        x, aux1, aux2 = self._forward(x)        aux_defined = self.training and self.aux_logits        if torch.jit.is_scripting():            if not aux_defined:                warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")            return GoogLeNetOutputs(x, aux2, aux1)        else:            return self.eager_outputs(x, aux2, aux1)class Inception(nn.Module):    def __init__(        self,        in_channels: int,        ch1x1: int,        ch3x3red: int,        ch3x3: int,        ch5x5red: int,        ch5x5: int,        pool_proj: int,        conv_block: Optional[Callable[..., nn.Module]] = None    ) -> None:        super(Inception, self).__init__()        if conv_block is None:            conv_block = BasicConv2d        self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)        self.branch2 = nn.Sequential(            conv_block(in_channels, ch3x3red, kernel_size=1),            conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)        )        self.branch3 = nn.Sequential(            conv_block(in_channels, ch5x5red, kernel_size=1),            # Here, kernel_size=3 instead of kernel_size=5 is a known bug.            # Please see  for details.            conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1)        )        self.branch4 = nn.Sequential(            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),            conv_block(in_channels, pool_proj, kernel_size=1)        )    def _forward(self, x: Tensor) -> List[Tensor]:        branch1 = self.branch1(x)        branch2 = self.branch2(x)        branch3 = self.branch3(x)        branch4 = self.branch4(x)        outputs = [branch1, branch2, branch3, branch4]        return outputs    def forward(self, x: Tensor) -> Tensor:        outputs = self._forward(x)        return torch.cat(outputs, 1)class InceptionAux(nn.Module):    def __init__(        self,        in_channels: int,        num_classes: int,        conv_block: Optional[Callable[..., nn.Module]] = None    ) -> None:        super(InceptionAux, self).__init__()        if conv_block is None:            conv_block = BasicConv2d        self.conv = conv_block(in_channels, 128, kernel_size=1)        self.fc1 = nn.Linear(2048, 1024)        self.fc2 = nn.Linear(1024, num_classes)    def forward(self, x: Tensor) -> Tensor:        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14        x = F.adaptive_avg_pool2d(x, (4, 4))        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4        x = self.conv(x)        # N x 128 x 4 x 4        x = torch.flatten(x, 1)        # N x 2048        x = F.relu(self.fc1(x), inplace=True)        # N x 1024        x = F.dropout(x, 0.7, training=self.training)        # N x 1024        x = self.fc2(x)        # N x 1000 (num_classes)        return xclass BasicConv2d(nn.Module):    def __init__(        self,        in_channels: int,        out_channels: int,        **kwargs: Any    ) -> None:        super(BasicConv2d, self).__init__()        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)    def forward(self, x: Tensor) -> Tensor:        x = self.conv(x)        x = self.bn(x)        return F.relu(x, inplace=True)

4 训练及验证

train.py

import torchimport torch.nn as nnfrom torchvision import transforms, datasets, utilsimport matplotlib.pyplot as pltimport numpy as npimport torch.optim as optimfrom model import googlenetimport osimport jsonimport timeimport torchvision#device : GPU 或 CPUdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print(device)#数据预处理data_transform = {    "train": transforms.Compose([transforms.RandomResizedCrop(224), # 随机裁剪为224x224                                 transforms.RandomHorizontalFlip(), # 水平翻转                                 transforms.ToTensor(), # 转为张量                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),# 均值和方差为0.5    "val": transforms.Compose([transforms.Resize((224, 224)), # 重置大小                               transforms.ToTensor(),                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}batch_size = 4 # 批次大小data_root = os.getcwd() # 获取当前路径image_path = data_root + "/数据"  # 数据路径 #image_path = data_root + "/数据/flower_data"  # 数据路径 train_dataset = datasets.ImageFolder(root=image_path + "/train",                                     transform=data_transform["train"]) # 加载训练数据集并预处理train_num = len(train_dataset) # 训练数据集大小train_loader = torch.utils.data.DataLoader(train_dataset,                                           batch_size=batch_size, shuffle=True,                                           num_workers=2) # 训练加载器validate_dataset = datasets.ImageFolder(root=image_path + "/val",                                        transform=data_transform["val"]) # 验证数据集val_num = len(validate_dataset) # 验证数据集大小validate_loader = torch.utils.data.DataLoader(validate_dataset,                                              batch_size=batch_size, shuffle=True,                                              num_workers=2) # 验证加载器print("训练数据集大小: ",train_num,"\n") # 28218print("验证数据集大小: ",val_num,"\n") # 308def imshow(img):    img = img / 2 + 0.5     # unnormalize    npimg = img.numpy()    plt.imshow(np.transpose(npimg, (1, 2, 0)))    plt.show()num_classes=int(input("输入分类数目:"))net = googlenet(num_classes, init_weights=True) # 调用模型net.to(device)loss_function = nn.CrossEntropyLoss() # 损失函数:交叉熵optimizer = optim.Adam(net.parameters(), lr=0.0002) #优化器 Adamsave_path = './googlenet.pth' # 训练参数保存路径best_acc = 0.0 # 训练过程中最高准确率#开始进行训练和测试,训练一轮,测试一轮for epoch in range(10):    # 训练部分    print(">>开始训练: ",epoch+1)    net.train()    #训练dropout    running_loss = 0.0    t1 = time.perf_counter()    for step, data in enumerate(train_loader, start=0):        images, labels = data        #print("\nlabels: ",labels)        #imshow(torchvision.utils.make_grid(images))        optimizer.zero_grad() # 梯度置0        outputs = net(images.to(device))         loss = loss_function(outputs, labels.to(device))        loss.backward() # 反向传播        optimizer.step()                running_loss += loss.item() # 累加损失        rate = (step + 1) / len(train_loader) # 训练进度        a = "*" * int(rate * 50) # *数        b = "." * int((1 - rate) * 50) # .数        print("\rtrain loss: {:^3.0f}%[{}->{}]{:.3f}".format(int(rate * 100), a, b, loss), end="")    print()    print(time.perf_counter()-t1) # 一个epoch花费的时间    # 验证部分    print(">>开始验证: ",epoch+1)    net.eval()    #验证不需要dropout    acc = 0.0  # 一个批次中分类正确个数    with torch.no_grad():        for val_data in validate_loader:            val_images, val_labels = val_data            outputs = net(val_images.to(device))            #print("outputs: \n",outputs,"\n")            predict_y = torch.max(outputs, dim=1)[1]            #print("predict_y: \n",predict_y,"\n")            acc += (predict_y == val_labels.to(device)).sum().item() # 预测和标签一致,累加        val_accurate = acc / val_num # 一个批次的准确率        if val_accurate > best_acc:            best_acc = val_accurate            torch.save(net.state_dict(), save_path) # 更新准确率最高的网络参数        print('[epoch %d] train_loss: %.3f  test_accuracy: %.3f' %              (epoch + 1, running_loss / step, val_accurate))print('Finished Training')# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}flower_list = train_dataset.class_to_idx #  {0: 'daisy', 1: 'dandelion', 2: 'roses', 3: 'sunflowers', 4: 'tulips'}cla_dict = dict((val, key) for key, val in flower_list.items())# 将字典写入 json 文件json_str = json.dumps(cla_dict, indent=4) # 字典转jsonwith open('class_indices.json', 'w') as json_file: # 对class_indices.json写入操作    json_file.write(json_str) # 写入class_indices.json

5 测试

`predict.py`

import torchfrom model import googlenetfrom PIL import Imagefrom torchvision import transformsimport matplotlib.pyplot as pltimport jsonimport osdata_transform = transforms.Compose(    [transforms.Resize((224, 224)),     transforms.ToTensor(),     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])cwd = os.getcwd() # 获取当前路径predict = '数据/predict'predict_path = os.path.join(cwd,predict)try:    json_file = open('./class_indices.json', 'r')    class_indict = json.load(json_file)except Exception as e:    print(e)    exit(-1)num_classes=len(class_indict)# cla 为类for j,cla in class_indict.items():    print(">>测试: ",cla)    #print("类别\t","概率")     path = os.path.join(predict_path,cla)    images = [f1 for f1 in os.listdir(path) if ".gif" not in f1] # 过滤gif动图    acc_ =  [0 for x in range(0,num_classes)] # 统计类别数    for image in images:        # 加载图片        img = Image.open(path+'/'+image).convert('RGB')        # RuntimeError: The size of tensor a (4) must match the size of tensor b (3) at non-singleton dimension 0        # .convert('RGB')        #plt.imshow(img)        # [N, C, H, W]        img = data_transform(img)        # expand batch dimension        img = torch.unsqueeze(img, dim=0)        # read class_indict        try:            json_file = open('./class_indices.json', 'r')            class_indict = json.load(json_file)        except Exception as e:            print(e)            exit(-1)                # create model        model = googlenet(num_classes)        # load model weights        model_weight_path = "./googlenet.pth"        model.load_state_dict(torch.load(model_weight_path))        model.eval()        with torch.no_grad():            # predict class            output = torch.squeeze(model(img))            predict = torch.softmax(output, dim=0)            predict_cla = torch.argmax(predict).numpy()        print(class_indict[str(predict_cla)],'\t', predict[predict_cla].item())        acc_[predict_cla]+=1        #print(acc_)        #plt.show()    #print("acc_: ",acc_)    if len(images) == 0:        print("{}文件夹为空".format(cla))    else:        print("{}总共有{}张图片 \n其中,".format(cla,len(images)))    #print(class_indict.values(),'\n',str(acc_))        print("{}准确率为:{}%".format(cla,100*acc_[int(j)]/len(images)))    print("\n")print(">>测试完毕!")

Anaconda 3

python 3.6

pytorch 1.3

torchvision 0.4

结构

|——GoogLeNet

|————数据

|————————下载数据

|————————train

|————————val

|————————preditct

|————get_data.py

|————spile_data.py

|————model.py

|————train.py

|————predict.py

在GoogLeNet文件夹,右键打开终端:

python get_data.pypython spile_data.pypython train.pypython predict.py

标签: #pytorch ner