龙空技术网

数据倾斜面试题知识点总结

尚硅谷教育 359

前言:

目前各位老铁们对“sample算子”可能比较看重,看官们都想要学习一些“sample算子”的相关文章。那么小编也在网上搜集了一些关于“sample算子””的相关文章,希望小伙伴们能喜欢,大家快快来了解一下吧!

公司一:总用户量1000万,5台64G内存的服务器。

公司二:总用户量10亿,1000台64G内存的服务器。

1.公司一的数据分析师在做join的时候发生了数据倾斜,会导致有几百万用户的相关数据集中到了一台服务器上,几百万的用户数据,说大也不大,正常字段量的数据的话64G还是能轻松处理掉的。

2.公司二的数据分析师在做join的时候也发生了数据倾斜,可能会有1个亿的用户相关数据集中到了一台机器上了(相信我,这很常见)。这时候一台机器就很难搞定了,最后会很难算出结果。

1 数据倾斜表现

1)hadoop中的数据倾斜表现:

l 有一个多几个Reduce卡住,卡在99.99%,一直不能结束。

l 各种container报错OOM

l 异常的Reducer读写的数据量极大,至少远远超过其它正常的Reducer

l 伴随着数据倾斜,会出现任务被kill等各种诡异的表现。

2)hive中数据倾斜

一般都发生在Sql中group by和join on上,而且和数据逻辑绑定比较深。

3)Spark中的数据倾斜

Spark中的数据倾斜,包括Spark Streaming和Spark Sql,表现主要有下面几种:

l Executor lost,OOM,Shuffle过程出错;

l Driver OOM;

l 单个Executor执行时间特别久,整体任务卡在某个阶段不能结束;

l 正常运行的任务突然失败;

2 数据倾斜产生原因

我们以Spark和Hive的使用场景为例。

他们在做数据运算的时候会涉及到,count distinct、group by、join on等操作,这些都会触发Shuffle动作。一旦触发Shuffle,所有相同key的值就会被拉到一个或几个Reducer节点上,容易发生单点计算问题,导致数据倾斜。

一般来说,数据倾斜原因有以下几方面:

1)key分布不均匀;

2)建表时考虑不周

我们举一个例子,就说数据默认值的设计吧,假设我们有两张表:

user(用户信息表):userid,register_ip

ip(IP表):ip,register_user_cnt

这可能是两个不同的人开发的数据表。如果我们的数据规范不太完善的话,会出现一种情况:

user表中的register_ip字段,如果获取不到这个信息,我们默认为null;

但是在ip表中,我们在统计这个值的时候,为了方便,我们把获取不到ip的用户,统一认为他们的ip为0。

两边其实都没有错的,但是一旦我们做关联了,这个任务会在做关联的阶段,也就是sql的on的阶段卡死。

3)业务数据激增

比如订单场景,我们在某一天在北京和上海两个城市多了强力的推广,结果可能是这两个城市的订单量增长了10000%,其余城市的数据量不变。

然后我们要统计不同城市的订单情况,这样,一做group操作,可能直接就数据倾斜了。

3 解决数据倾斜思路

很多数据倾斜的问题,都可以用和平台无关的方式解决,比如更好的数据预处理,异常值的过滤等。因此,解决数据倾斜的重点在于对数据设计和业务的理解,这两个搞清楚了,数据倾斜就解决了大部分了。

1)业务逻辑

我们从业务逻辑的层面上来优化数据倾斜,比如上面的两个城市做推广活动导致那两个城市数据量激增的例子,我们可以单独对这两个城市来做count,单独做时可用两次MR,第一次打散计算,第二次再最终聚合计算。完成后和其它城市做整合。

2)程序层面

比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个Reduce任务。

我们可以先group by,再在外面包一层count,就可以了。比如计算按用户名去重后的总用户量:

(1)优化前 只有一个reduce,先去重再count负担比较大:

select name,count(distinct name)from user;

(2)优化后

// 设置该任务的每个job的reducer个数为3个。Hive默认-1,自动推断。

set mapred.reduce.tasks=3;

// 启动两个job,一个负责子查询(可以有多个reduce),另一个负责count(1):

select count(1) from (select name from user group by name) tmp;

3)调参方面

Hadoop和Spark都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

4)从业务和数据上解决数据倾斜

很多数据倾斜都是在数据的使用上造成的。我们举几个场景,并分别给出它们的解决方案。

l 有损的方法:找到异常数据,比如ip为0的数据,过滤掉

l 无损的方法:对分布不均匀的数据,单独计算

l 先对key做一层hash,先将数据随机打散让它的并行度变大,再汇集

l 数据预处理

4 定位导致数据倾斜代码

Spark数据倾斜只会发生在shuffle过程中。

这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。

出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。

4.1 某个task执行特别慢的情况

首先要看的,就是数据倾斜发生在第几个stage中:

如果是用yarn-client模式提交,那么在提交的机器本地是直接可以看到log,可以在log中找到当前运行到了第几个stage;

如果是用yarn-cluster模式提交,则可以通过Spark Web UI来查看当前运行到了第几个stage。

此外,无论是使用yarn-client模式还是yarn-cluster模式,我们都可以在Spark Web UI上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。

看task运行时间和数据量

task运行时间

比如下图中,倒数第三列显示了每个task的运行时间。明显可以看到,有的task运行特别快,只需要几秒钟就可以运行完;而有的task运行特别慢,需要几分钟才能运行完,此时单从运行时间上看就已经能够确定发生数据倾斜了。

task数据量

此外,倒数第一列显示了每个task处理的数据量,明显可以看到,运行时间特别短的task只需要处理几百KB的数据即可,而运行时间特别长的task需要处理几千KB的数据,处理的数据量差了10倍。此时更加能够确定是发生了数据倾斜。

推断倾斜代码

知道数据倾斜发生在哪一个stage之后,接着我们就需要根据stage划分原理,推算出来发生倾斜的那个stage对应代码中的哪一部分,这部分代码中肯定会有一个shuffle类算子。

精准推算stage与代码的对应关系,需要对Spark的源码有深入的理解,这里我们可以介绍一个相对简单实用的推算方法:只要看到Spark代码中出现了一个shuffle类算子或者是Spark SQL的SQL语句中出现了会导致shuffle的语句(比如group by语句),那么就可以判定,以那个地方为界限划分出了前后两个stage。

这里我们就以如下单词计数来举例。

val conf = new SparkConf()val sc = new SparkContext(conf)val lines = sc.textFile("hdfs://...")val words = lines.flatMap(_.split(" "))val pairs = words.map((_, 1))val wordCounts = pairs.reduceByKey(_ + _)wordCounts.collect().foreach(println(_))

在整个代码中只有一个reduceByKey是会发生shuffle的算子,也就是说这个算子为界限划分出了前后两个stage:

stage0,主要是执行从textFile到map操作,以及shuffle write操作(对pairs RDD中的数据进行分区操作,每个task处理的数据中,相同的key会写入同一个磁盘文件内)。

stage1,主要是执行从reduceByKey到collect操作,以及stage1的各个task一开始运行,就会首先执行shuffle read操作(会从stage0的各个task所在节点拉取属于自己处理的那些key,然后对同一个key进行全局性的聚合或join等操作,在这里就是对key的value值进行累加)

stage1在执行完reduceByKey算子之后,就计算出了最终的wordCounts RDD,然后会执行collect算子,将所有数据拉取到Driver上,供我们遍历和打印输出。

123456789

通过对单词计数程序的分析,希望能够让大家了解最基本的stage划分的原理,以及stage划分后shuffle操作是如何在两个stage的边界处执行的。然后我们就知道如何快速定位出发生数据倾斜的stage对应代码的哪一个部分了。

比如我们在Spark Web UI或者本地log中发现,stage1的某几个task执行得特别慢,判定stage1出现了数据倾斜,那么就可以回到代码中,定位出stage1主要包括了reduceByKey这个shuffle类算子,此时基本就可以确定是是该算子导致了数据倾斜问题。

此时,如果某个单词出现了100万次,其他单词才出现10次,那么stage1的某个task就要处理100万数据,整个stage的速度就会被这个task拖慢。

4.2 某个task莫名其妙内存溢出的情况

这种情况下去定位出问题的代码就比较容易了。我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。

但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出。

5 查看导致数据倾斜的key分布情况

先对pairs采样10%的样本数据,然后使用countByKey算子统计出每个key出现的次数,最后在客户端遍历和打印样本数据中各个key的出现次数。

val sampledPairs = pairs.sample(false, 0.1)

val sampledWordCounts = sampledPairs.countByKey()

sampledWordCounts.foreach(println(_))

6 Spark 数据倾斜的解决方案6.1 使用Hive ETL预处理数据6.1.1 适用场景

导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

6.1.2 实现思路

此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

6.1.3 方案实现原理

这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

6.1.4 方案优缺点

优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

6.1.5 方案实践经验

在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

6.1.6 项目实践经验

在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

6.2 过滤少数导致倾斜的key6.2.1 方案适用场景

如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

6.2.2 方案实现思路

如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。

比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。

如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

6.2.3 方案实现原理

将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

6.2.4 方案优缺点

优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

6.2.5 方案实践经验

在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

6.3 提高shuffle操作的并行度6.3.1 方案适用场景

如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

6.3.2 方案实现思路

在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,默认是200,对于很多场景来说都有点过小。

6.3.3 方案实现原理

增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。

而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。

6.3.4 方案优缺点

优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

6.3.5 方案实践经验

该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

6.4 两阶段聚合(局部聚合+全局聚合)6.4.1 方案适用场景

对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

6.4.2 方案实现思路

这个方案的核心实现思路就是进行两阶段聚合:

第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。

接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。

然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

示例代码如下:

// 第一步,给RDD中的每个key都打上一个随机前缀。JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(new PairFunction<Tuple2<Long,Long>, String, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<String, Long> call(Tuple2<Long, Long> tuple)throws Exception {Random random = new Random();int prefix = random.nextInt(10);return new Tuple2<String, Long>(prefix + "_" + tuple._1, tuple._2);}});// 第二步,对打上随机前缀的key进行局部聚合。JavaPairRDD<String, Long> localAggrRdd = randomPrefixRdd.reduceByKey(new Function2<Long, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Long call(Long v1, Long v2) throws Exception {return v1 + v2;}});// 第三步,去除RDD中每个key的随机前缀。JavaPairRDD<Long, Long> removedRandomPrefixRdd = localAggrRdd.mapToPair(new PairFunction<Tuple2<String,Long>, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<Long, Long> call(Tuple2<String, Long> tuple)throws Exception {long originalKey = Long.valueOf(tuple._1.split("_")[1]);return new Tuple2<Long, Long>(originalKey, tuple._2);}});// 第四步,对去除了随机前缀的RDD进行全局聚合。JavaPairRDD<Long, Long> globalAggrRdd = removedRandomPrefixRdd.reduceByKey(new Function2<Long, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Long call(Long v1, Long v2) throws Exception {return v1 + v2;}});

6.4.3 方案实现原理

将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

6.4.4 方案优缺点

优点对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

缺点仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

6.5 将reduce join转为map join6.5.1 方案适用场景

在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M或者一两G),比较适用此方案。

6.5.2 方案实现思路

不使用join算子进行连接操作,而使用Broadcast变量与map类算子实现join操作,进而完全规避掉shuffle类的操作,彻底避免数据倾斜的发生和出现。将较小RDD中的数据直接通过collect算子拉取到Driver端的内存中来,然后对其创建一个Broadcast变量,广播给其他Executor节点;

接着对另外一个RDD执行map类算子,在算子函数内,从Broadcast变量中获取较小RDD的全量数据,与当前RDD的每一条数据按照连接key进行比对,如果连接key相同的话,那么就将两个RDD的数据用你需要的方式连接起来。

示例如下:

// 首先将数据量比较小的RDD的数据,collect到Driver中来。List<Tuple2<Long, Row>> rdd1Data = rdd1.collect()// 然后使用Spark的广播功能,将小RDD的数据转换成广播变量,这样每个Executor就只有一份RDD的数据。// 可以尽可能节省内存空间,并且减少网络传输性能开销。final Broadcast<List<Tuple2<Long, Row>>> rdd1DataBroadcast = sc.broadcast(rdd1Data);// 对另外一个RDD执行map类操作,而不再是join类操作。JavaPairRDD<String, Tuple2<String, Row>> joinedRdd = rdd2.mapToPair(new PairFunction<Tuple2<Long,String>, String, Tuple2<String, Row>>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<String, Tuple2<String, Row>> call(Tuple2<Long, String> tuple)throws Exception {// 在算子函数中,通过广播变量,获取到本地Executor中的rdd1数据。List<Tuple2<Long, Row>> rdd1Data = rdd1DataBroadcast.value();// 可以将rdd1的数据转换为一个Map,便于后面进行join操作。Map<Long, Row> rdd1DataMap = new HashMap<Long, Row>();for(Tuple2<Long, Row> data : rdd1Data) {rdd1DataMap.put(data._1, data._2);}// 获取当前RDD数据的key以及value。String key = tuple._1;String value = tuple._2;// 从rdd1数据Map中,根据key获取到可以join到的数据。Row rdd1Value = rdd1DataMap.get(key);return new Tuple2<String, String>(key, new Tuple2<String, Row>(value, rdd1Value));}});// 这里得提示一下。// 上面的做法,仅仅适用于rdd1中的key没有重复,全部是唯一的场景。// 如果rdd1中有多个相同的key,那么就得用flatMap类的操作,在进行join的时候不能用map,而是得遍历rdd1所有数据进行join。// rdd2中每条数据都可能会返回多条join后的数据。

6.5.3 方案实现原理

普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。

但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。具体原理如下图所示。

6.5.4 方案优缺点

优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。

缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。毕竟我们需要将小表进行广播,此时会比较消耗内存资源,driver和每个Executor内存中都会驻留一份小RDD的全量数据。如果我们广播出去的RDD数据比较大,比如10G以上,那么就可能发生内存溢出了。因此并不适合两个都是大表的情况。

6.6 采样倾斜key并分拆join操作6.6.1 方案适用场景

两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。

如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

6.6.2 方案实现思路

对包含少数几个数据量过大的key的那个RDD,通过sample算子采样出一份样本来,然后统计下每个key的数量,计算出来数据量最大的是哪几个key。

然后将这几个key对应的数据从原来的RDD中拆分出来,形成一个单独的RDD,并给每个key都打上n以内的随机数作为前缀;

而不会导致倾斜的大部分key形成另外一个RDD。

接着将需要join的另一个RDD,也过滤出来那几个倾斜key对应的数据并形成一个单独的RDD,将每条数据膨胀成n条数据,这n条数据都按顺序附加一个0~n的前缀;

不会导致倾斜的大部分key也形成另外一个RDD。

再将附加了随机前缀的独立RDD与另一个膨胀n倍的独立RDD进行join,此时就可以将原先相同的key打散成n份,分散到多个task中去进行join了。

而另外两个普通的RDD就照常join即可。

最后将两次join的结果使用union算子合并起来即可,就是最终的join结果。

示例如下:

// 首先从包含了少数几个导致数据倾斜key的rdd1中,采样10%的样本数据。JavaPairRDD<Long, String> sampledRDD = rdd1.sample(false, 0.1);// 对样本数据RDD统计出每个key的出现次数,并按出现次数降序排序。// 对降序排序后的数据,取出top 1或者top 100的数据,也就是key最多的前n个数据。// 具体取出多少个数据量最多的key,由大家自己决定,我们这里就取1个作为示范。// 每行数据变为<key,1>JavaPairRDD<Long, Long> mappedSampledRDD = sampledRDD.mapToPair(new PairFunction<Tuple2<Long,String>, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<Long, Long> call(Tuple2<Long, String> tuple)throws Exception {return new Tuple2<Long, Long>(tuple._1, 1L);}});// 按key累加行数JavaPairRDD<Long, Long> countedSampledRDD = mappedSampledRDD.reduceByKey(new Function2<Long, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Long call(Long v1, Long v2) throws Exception {return v1 + v2;}});// 反转key和value,变为<value,key>JavaPairRDD<Long, Long> reversedSampledRDD = countedSampledRDD.mapToPair(new PairFunction<Tuple2<Long,Long>, Long, Long>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<Long, Long> call(Tuple2<Long, Long> tuple)throws Exception {return new Tuple2<Long, Long>(tuple._2, tuple._1);}});// 以行数排序key,取最多行数的keyfinal Long skewedUserid = reversedSampledRDD.sortByKey(false).take(1).get(0)._2;// 从rdd1中分拆出导致数据倾斜的key,形成独立的RDD。JavaPairRDD<Long, String> skewedRDD = rdd1.filter(new Function<Tuple2<Long,String>, Boolean>() {private static final long serialVersionUID = 1L;@Overridepublic Boolean call(Tuple2<Long, String> tuple) throws Exception {return tuple._1.equals(skewedUserid);}});// 从rdd1中分拆出不导致数据倾斜的普通key,形成独立的RDD。JavaPairRDD<Long, String> commonRDD = rdd1.filter(new Function<Tuple2<Long,String>, Boolean>() {private static final long serialVersionUID = 1L;@Overridepublic Boolean call(Tuple2<Long, String> tuple) throws Exception {return !tuple._1.equals(skewedUserid);}});// rdd2,就是那个所有key的分布相对较为均匀的rdd。// 这里将rdd2中,前面获取到的key对应的数据,过滤出来,分拆成单独的rdd,并对rdd中的数据使用flatMap算子都扩容100倍。// 对扩容的每条数据,都打上0~100的前缀。JavaPairRDD<String, Row> skewedRdd2 = rdd2.filter(new Function<Tuple2<Long,Row>, Boolean>() {private static final long serialVersionUID = 1L;@Overridepublic Boolean call(Tuple2<Long, Row> tuple) throws Exception {return tuple._1.equals(skewedUserid);}}).flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {private static final long serialVersionUID = 1L;@Overridepublic Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple) throws Exception {Random random = new Random();List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();for(int i = 0; i < 100; i++) {list.add(new Tuple2<String, Row>(i + "_" + tuple._1, tuple._2));}return list;}});// 将rdd1中分拆出来的导致倾斜的key的独立rdd,每条数据都打上100以内的随机前缀。// 然后将这个rdd1中分拆出来的独立rdd,与上面rdd2中分拆出来的独立rdd,进行join。JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD1 = skewedRDD.mapToPair(new PairFunction<Tuple2<Long,String>, String, String>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<String, String> call(Tuple2<Long, String> tuple)throws Exception {Random random = new Random();int prefix = random.nextInt(100);return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);}}).join(skewedUserid2infoRDD).mapToPair(new PairFunction<Tuple2<String,Tuple2<String,Row>>, Long, Tuple2<String, Row>>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<Long, Tuple2<String, Row>> call(Tuple2<String, Tuple2<String, Row>> tuple)throws Exception {long key = Long.valueOf(tuple._1.split("_")[1]);return new Tuple2<Long, Tuple2<String, Row>>(key, tuple._2);}});// 将rdd1中分拆出来的包含普通key的独立rdd,直接与rdd2进行join。JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD2 = commonRDD.join(rdd2);// 将倾斜key join后的结果与普通key join后的结果,uinon起来。// 就是最终的join结果。JavaPairRDD<Long, Tuple2<String, Row>> joinedRDD = joinedRDD1.union(joinedRDD2);

6.6.3 方案实现原理

对于join导致的数据倾斜,如果只是某几个key导致了倾斜,可以将少数几个key分拆成独立RDD,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会集中在少数几个task上,而是分散到多个task进行join了。具体原理见下图。

6.6.4 方案优缺点

优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。

缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

6.7 使用随机前缀和扩容RDD进行join6.7.1 方案适用场景

如果在进行join操作时,RDD中有大量的key导致数据倾斜,那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

6.7.2 方案实现思路

该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。

然后将该RDD的每条数据都打上一个n以内的随机前缀。

同时对另外一个正常的RDD进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。

最后将两个处理后的RDD进行join即可。

示例代码如下:

// 首先将其中一个key分布相对较为均匀的RDD膨胀100倍。JavaPairRDD<String, Row> expandedRDD = rdd1.flatMapToPair(new PairFlatMapFunction<Tuple2<Long,Row>, String, Row>() {private static final long serialVersionUID = 1L;@Overridepublic Iterable<Tuple2<String, Row>> call(Tuple2<Long, Row> tuple)throws Exception {List<Tuple2<String, Row>> list = new ArrayList<Tuple2<String, Row>>();for(int i = 0; i < 100; i++) {list.add(new Tuple2<String, Row>(0 + "_" + tuple._1, tuple._2));}return list;}});// 其次,将另一个有数据倾斜key的RDD,每条数据都打上100以内的随机前缀。JavaPairRDD<String, String> mappedRDD = rdd2.mapToPair(new PairFunction<Tuple2<Long,String>, String, String>() {private static final long serialVersionUID = 1L;@Overridepublic Tuple2<String, String> call(Tuple2<Long, String> tuple)throws Exception {Random random = new Random();int prefix = random.nextInt(100);return new Tuple2<String, String>(prefix + "_" + tuple._1, tuple._2);}});// 将两个处理后的RDD进行join即可。JavaPairRDD<String, Tuple2<String, Row>> joinedRDD = mappedRDD.join(expandedRDD);

6.7.3 方案实现原理

将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task中去处理,而不是让一个task处理大量的相同key。

该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD,因此上一种方案扩容RDD后对内存的占用并不大;

而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD进行数据扩容,对内存资源要求很高。

6.7.4 方案优缺点

优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。

缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD进行扩容,对内存资源要求很高。

6.7.5 方案实践经验

曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。优化之前,作业的执行时间大约是60分钟左右;使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

6.8 多种方案组合使用

在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。

比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一HiveETL预处理和过滤少数导致倾斜的k,预处理一部分数据,并过滤一部分数据来缓解;

其次可以对某些shuffle操作提升并行度,优化其性能;

最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。

大家需要对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题。

7 Spark数据倾斜处理小结

标签: #sample算子