龙空技术网

详解RTP协议之H264封包和解包实战

antonio 2850

前言:

而今各位老铁们对“解包封包教程”大概比较珍视,同学们都想要剖析一些“解包封包教程”的相关知识。那么小编也在网络上搜集了一些关于“解包封包教程””的相关知识,希望你们能喜欢,你们快快来学习一下吧!

0.引言

为了更好理解本篇文章,可以先阅读前面几篇文章,文章列表如下:

详解RTP协议之H264封包细节(1)

详细解析RTSP框架和数据包分析(1)

手把手搭建RTSP流媒体服务器

RTP协议

HLS实战之Wireshark抓包分析

HTTP实战之Wireshark抓包分析

建议:阅读本文前,一定要阅读前面的文章,只有理解了原理,才能够正真读懂代码。

1.RTP实战源码框架

在win上主要是支持qt,使用2015编译器。linux上支持cmake编译。主要是支持跨平台支持。

使用函数int get_annexb_nalu (nalu_t *nalu, FILE *bits),一开始是读取本地h264文件,解析出不带startcode的nalu,接着是函数static void rtp_h264_pack_get_info(void* pack, uint16_t* seq, uint32_t* timestamp),经过函数就会得到RTP包,处理RTP包就有2个流程,第一个是通过网络发送出去,然后播放。另外一个流程是通过RTP_unpack去解码,生成nalu,再加上h264的start code,就可以存储在本地文件,然后再播放。框架如下图所示:

main.c是用户自定义发送和写文件,测试函数。

rtp-packet.c是RTP Packet序列化和反序列化功能。

rtp-payload.c主要是RTP封包和拆包的接口层。

rtp-h264-packet.c主要是H264封包RTP的实现层。

rtp-h264-unpacket.c主要是H264拆包RTP的实现层。

这里以视频数据为例子,整个源码的数据对象的关系是,在封包流程中,nalu指向rtp结构,再指向rtp序列化,最终才是sendto的数据。在解封装的流程中,recv的数据指向rtp反序列化,再到rtp结构,最终解析出nalu,加上startcode,存在本地文件,保存为h264,可以播放。

2.RTP实战测试效果

(1)播放命令

ffplay h264.sdp -protocol_whitelist "file,http,https,rtp,udp,tcp,tls"

界面如下:

(2)注意,需要在如下的目录下,准备好输入h264文件,即把h264文件放到这个debug目录,因为代码中需要打开输入的h264文件。

(3)h264.sdp是代码生成,整个日志打印过程,其界面如下:

3.源码详解

3.1 初始化参数和回调函数注册

(1)rtp header头部定义。按照前面文章描述的头部结构来定义。封包流程中,注册函数,源码如下:

/** * @brief rtp_payload_encode_input 这里是通用的接口 * @param encoder * @param data      data具体是什么媒体类型的数据,接口不关注,具体由ctx->encoder->input去处理 * @param bytes * @param timestamp * @return */int rtp_payload_encode_input(void* encoder, const void* data, int bytes, uint32_t timestamp){    struct rtp_payload_delegate_t* ctx;    ctx = (struct rtp_payload_delegate_t*)encoder;    return ctx->encoder->input(ctx->packer, data, bytes, timestamp);}

RTP Header固定长度为12个字节。rtp packet(包括header+payload)的数据结构定义如下:

void* rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam){    struct rtp_payload_delegate_t* ctx;    ctx = calloc(1, sizeof(*ctx));    if (ctx)    {        if (rtp_payload_find(payload, name, ctx) < 0            || NULL == (ctx->packer = ctx->decoder->create(handler, cbparam)))        {            free(ctx);            return NULL;        }    }    return ctx;}

(2)网络发送到本地,这里使用的UDP发送。

int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

3.2 详解 封装RTP包流程源码

(1)函数rtp_payload_encode_create(int payload, const char* name, uint16_t seq, uint32_t ssrc, struct rtp_payload_t *handler, void* cbparam)接收用户参数,并设置回调函数。源码如下:

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(2)通过如下代码可以看出,ctx->encoder->create指向的函数是 rtp_h264_pack_create,也就是正真的实现体。源码如下:

struct rtp_payload_encode_t *rtp_h264_encode(){    static struct rtp_payload_encode_t packer = {        rtp_h264_pack_create,        rtp_h264_pack_destroy,        rtp_h264_pack_get_info,        rtp_h264_pack_input,    };    return &packer;}

(3)函数rtp_h264_pack_create,用来存储外部设置的参数。源码如下:

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(4)封包流程中,也是使用相同的回调函数,源码如下:

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(5)通过网络发送到本地。源码如下:

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(6)获取nalu的sps、pps,并封装成RTP包。源码如下:

int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(7)rtp-payload.c的函数都是接口层,正真实现体都在rtp-h264-pack.c和rtp-h264-unpack.c里。

int rtp_packet_serialize(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    hdrlen = rtp_packet_serialize_header(pkt, data, bytes);    if (hdrlen < RTP_FIXED_HEADER || hdrlen + pkt->payloadlen > bytes)        return -1;    memcpy(((uint8_t*)data) + hdrlen, pkt->payload, pkt->payloadlen);    return hdrlen + pkt->payloadlen;}

(8)接口ctx->encoder->input(ctx->packer, data, bytes, timestamp)执行的实现体rtp_h264_pack_input(void* pack, const void* h264, int bytes, uint32_t timestamp),通过如下源码,可以看出。

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(9)从这里就可以实现打包,源码如下:

int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(10)函数rtp_h264_pack_nalu(packer, p1, (int)nalu_size)意思是,正如前面文章所讲,是直接打包,就是没有切片,一个nalu打包为一个RTP包。源码如下:

// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(11)函数调用rtp_packet_serialize(&packer->pkt, rtp, n),就是一个打包的过程,就是严格按照RTP的SPEC来实现。源码如下:

// 拿到一帧RTP序列化后的数据static int rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags){    struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;//拿到用户传递进来的参数    int ret = 0;    ret = sendto(                ctx->fd,                (void*)packet,                bytes,                0,                (struct sockaddr*)&ctx->addr,                ctx->addr_size);    uint8_t *nalu = (uint8_t *)packet;    printf("rtp send packet -> nalu_type:%d,0x%02x,0x%02x, bytes:%d, timestamp:%u\n",           nalu[12]&0x1f,  nalu[12],  nalu[13], bytes, timestamp);    ret = rtp_payload_decode_input(ctx->decoder_h264, packet, bytes);       // 重新又解封装    return 0;}
// 把可读RTP packet封装成要发送出去的数据 序列化int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(12)把可读RTP packet封装成要发送出去的数据,与上面的函数是反向关系。这里把头部和数据分开处理。从packet读取一个个字节,然后封包去处理。

int rtp_packet_serialize_header(const struct rtp_packet_t *pkt, void* data, int bytes){    int hdrlen;    uint32_t i;    uint8_t* ptr;    if (RTP_VERSION != pkt->rtp.v || 0 != (pkt->extlen % 4))    {        assert(0); // RTP version field must equal 2 (p66)        return -1;    }    // RFC3550 5.1 RTP Fixed Header Fields(p12) 是否要扩展    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4 + (pkt->rtp.x ? 4 : 0);    if (bytes < hdrlen + pkt->extlen)        return -1;    ptr = (uint8_t *)data;    nbo_write_rtp_header(ptr, &pkt->rtp);    ptr += RTP_FIXED_HEADER;    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++, ptr += 4)    {        nbo_w32(ptr, pkt->csrc[i]);     // csrc列表封装到头部    }    // pkt header extension    if (1 == pkt->rtp.x)    {        // 5.3.1 RTP Header Extension        assert(0 == (pkt->extlen % 4));        nbo_w16(ptr, pkt->reserved);        nbo_w16(ptr + 2, pkt->extlen / 4);        memcpy(ptr + 4, pkt->extension, pkt->extlen);   // extension封装到头部        ptr += pkt->extlen + 4;    }    return hdrlen + pkt->extlen;}

(13)RTP打包H264函数,把带startcode的nalu也传递进来。如果nalu_size + RTP_FIXED_HEADER <= (size_t)packer->size,这就是前面所说的打包的一种方式,正好吻合起来,如下:

static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes){    int r, n;    unsigned char *rtp;    // RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)    // RFC6184 5.8. Fragmentation Units (FUs) (p29)    uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑    uint8_t fu_header = *nalu & 0x1F;           // 设置为s置位1    r = 0;    nalu += 1; // skip NAL Unit Type byte    bytes -= 1;    assert(bytes > 0);    // FU-A start    for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)    {        if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)        {            assert(0 == (fu_header & FU_START));            fu_header = FU_END | (fu_header & 0x1F); // FU-A end  整个nalu结束了            packer->pkt.payloadlen = bytes;        }        else        {            packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;        }        packer->pkt.payload = nalu;        n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;        rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);        if (!rtp) return -ENOMEM;        packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag        n = rtp_packet_serialize_header(&packer->pkt, rtp, n);        if (n != RTP_FIXED_HEADER)        {            assert(0);            return -1;        }        /*fu_indicator + fu_header*/        rtp[n + 0] = fu_indicator;        rtp[n + 1] = fu_header;        memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);        // packer->cbparam用户的参数        r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);        packer->handler.free(packer->cbparam, rtp);        bytes -= packer->pkt.payloadlen;        nalu += packer->pkt.payloadlen;        fu_header &= 0x1F; // clear flags    }    return r;}

(14)把一个比较大的nalu,分多次进行打包,使用FU的方式。代码的思想,如同前面的文章所描述。代码如下:

static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes){    int r, n;    unsigned char *rtp;    // RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)    // RFC6184 5.8. Fragmentation Units (FUs) (p29)    uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑    uint8_t fu_header = *nalu & 0x1F;           // 设置为s置位1    r = 0;    nalu += 1; // skip NAL Unit Type byte    bytes -= 1;    assert(bytes > 0);    // FU-A start    for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)    {        if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)        {            assert(0 == (fu_header & FU_START));            fu_header = FU_END | (fu_header & 0x1F); // FU-A end  整个nalu结束了            packer->pkt.payloadlen = bytes;        }        else        {            packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;        }        packer->pkt.payload = nalu;        n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;        rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);        if (!rtp) return -ENOMEM;        packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag        n = rtp_packet_serialize_header(&packer->pkt, rtp, n);        if (n != RTP_FIXED_HEADER)        {            assert(0);            return -1;        }        /*fu_indicator + fu_header*/        rtp[n + 0] = fu_indicator;        rtp[n + 1] = fu_header;        memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);        // packer->cbparam用户的参数        r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);        packer->handler.free(packer->cbparam, rtp);        bytes -= packer->pkt.payloadlen;        nalu += packer->pkt.payloadlen;        fu_header &= 0x1F; // clear flags    }    return r;}

(15)函数rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes)表示一个大的nalu分多次打包的过程,这个原理前面的文章,已经讲过了。源码如下:

static int rtp_h264_pack_fu_a(struct rtp_encode_h264_t *packer, const uint8_t* nalu, int bytes){    int r, n;    unsigned char *rtp;    // RFC6184 5.3. NAL Unit Header Usage: Table 2 (p15)    // RFC6184 5.8. Fragmentation Units (FUs) (p29)    uint8_t fu_indicator = (*nalu & 0xE0) | 28; // FU-A 固定的逻辑    uint8_t fu_header = *nalu & 0x1F;           // 设置为s置位1    r = 0;    nalu += 1; // skip NAL Unit Type byte    bytes -= 1;    assert(bytes > 0);    // FU-A start    for (fu_header |= FU_START; 0 == r && bytes > 0; ++packer->pkt.rtp.seq)    {        if (bytes + RTP_FIXED_HEADER <= packer->size - N_FU_HEADER)        {            assert(0 == (fu_header & FU_START));            fu_header = FU_END | (fu_header & 0x1F); // FU-A end  整个nalu结束了            packer->pkt.payloadlen = bytes;        }        else        {            packer->pkt.payloadlen = packer->size - RTP_FIXED_HEADER - N_FU_HEADER;        }        packer->pkt.payload = nalu;        n = RTP_FIXED_HEADER + N_FU_HEADER + packer->pkt.payloadlen;        rtp = (uint8_t*)packer->handler.alloc(packer->cbparam, n);        if (!rtp) return -ENOMEM;        //视频拆包时,nalu的结束标志        packer->pkt.rtp.m = (FU_END & fu_header) ? 1 : 0; // set marker flag        n = rtp_packet_serialize_header(&packer->pkt, rtp, n);        if (n != RTP_FIXED_HEADER)        {            assert(0);            return -1;        }        /*fu_indicator + fu_header*/        rtp[n + 0] = fu_indicator;        rtp[n + 1] = fu_header;        memcpy(rtp + n + N_FU_HEADER, packer->pkt.payload, packer->pkt.payloadlen);        // packer->cbparam用户的参数,回调用户定义的函数,前面已介绍过        r = packer->handler.packet(packer->cbparam, rtp, n + N_FU_HEADER + packer->pkt.payloadlen, packer->pkt.rtp.timestamp, 0);        packer->handler.free(packer->cbparam, rtp);        bytes -= packer->pkt.payloadlen;        nalu += packer->pkt.payloadlen;        fu_header &= 0x1F; // clear flags    }    return r;}

(16)前面的源码已经分析过,函数rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags)是用户定义的函数,主要是用作发送数据和自定义封装函数(把这个两个函数写在一起不是很合适)。函数packer->handler.packet(packer->cbparam, rtp, n, packer->pkt.rtp.timestamp, 0),这里会回调用户定义的rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags),就通过网络去发送数据到指定的IP上,我这里就是到本机。用户的参数和定义的函数就是通过 struct rtp_payload_t handler_rtp_decode_h264和struct rtp_h264_test_t ctx来完成。再回顾下这个源码,如下:

// 拿到一帧RTP序列化后的数据static int rtp_encode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags){    struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;//拿到用户传递进来的参数    int ret = 0;    ret = sendto(                ctx->fd,                (void*)packet,                bytes,                0,                (struct sockaddr*)&ctx->addr,                ctx->addr_size);    uint8_t *nalu = (uint8_t *)packet;    printf("rtp send packet -> nalu_type:%d,0x%02x,0x%02x, bytes:%d, timestamp:%u\n",           nalu[12]&0x1f,  nalu[12],  nalu[13], bytes, timestamp);    ret = rtp_payload_decode_input(ctx->decoder_h264, packet, bytes);       // 重新又解封装    return 0;}

3.3 解封RTP包流程源码

(1)函数rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam)接收外部参数。源码如下:

void* rtp_payload_decode_create(int payload, const char* name, struct rtp_payload_t *handler, void* cbparam){    struct rtp_payload_delegate_t* ctx;    ctx = calloc(1, sizeof(*ctx));    if (ctx)    {        if (rtp_payload_find(payload, name, ctx) < 0            || NULL == (ctx->packer = ctx->decoder->create(handler, cbparam)))        {            free(ctx);            return NULL;        }    }    return ctx;}

(2)通过如下代码可以看出,ctx->decoder->create指向的函数是rtp_h264_unpack_create(struct rtp_payload_t *handler, void* param),也就是正真的实现体。源码如下:

struct rtp_payload_decode_t *rtp_h264_decode(){    static struct rtp_payload_decode_t unpacker = {        rtp_h264_unpack_create,        rtp_h264_unpack_destroy,        rtp_h264_unpack_input,    };    return &unpacker;}
static void* rtp_h264_unpack_create(struct rtp_payload_t *handler, void* param){    struct rtp_decode_h264_t *unpacker;    unpacker = (struct rtp_decode_h264_t *)calloc(1, sizeof(*unpacker));    if(!unpacker)        return NULL;    memcpy(&unpacker->handler, handler, sizeof(unpacker->handler));    unpacker->cbparam = param;    unpacker->flags = -1;    return unpacker;}

(3)函数rtp_payload_decode_input(ctx->decoder_h264, packet, bytes)就是处在接口层,正真的实现是由ctx->decoder->input指向的函数rtp_h264_unpack_input(void* p, const void* packet, int bytes)(该函数才是正真的实现体),根据packer不同的类型去实现解封装,源码如下:

//解封装static int rtp_h264_unpack_input(void* p, const void* packet, int bytes){    int r;    uint8_t nalt;    struct rtp_packet_t pkt;    struct rtp_decode_h264_t *unpacker;    unpacker = (struct rtp_decode_h264_t *)p;    // 反序列化    if(!unpacker || 0 != rtp_packet_deserialize(&pkt, packet, bytes) || pkt.payloadlen < 1)        return -EINVAL;    if (-1 == unpacker->flags)    {        unpacker->flags = 0;        unpacker->seq = (uint16_t)(pkt.rtp.seq - 1); // disable packet lost    }    if ((uint16_t)pkt.rtp.seq != (uint16_t)(unpacker->seq + 1))    {        unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;        unpacker->size = 0; // discard previous packets    }    unpacker->seq = (uint16_t)pkt.rtp.seq;    //就是payload的第一个字节    nalt = ((unsigned char *)pkt.payload)[0];    switch(nalt & 0x1F)    {    case 0: // reserved    case 31: // reserved        // 这里最好是报错 然后返回错误值        assert(0);        return 0; // packet discard    //对应不同的类型,就做不同的解释    case 24: // STAP-A        return rtp_h264_unpack_stap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 0);    case 25: // STAP-B        return rtp_h264_unpack_stap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 1);    case 26: // MTAP16        return rtp_h264_unpack_mtap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 2);    case 27: // MTAP24        return rtp_h264_unpack_mtap(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 3);    case 28: // FU-A        return rtp_h264_unpack_fu(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 0);    case 29: // FU-B        return rtp_h264_unpack_fu(unpacker, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, 1);    default: // 1-23 NAL unit        r = unpacker->handler.packet(unpacker->cbparam, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, unpacker->flags);        unpacker->flags = 0;        unpacker->size = 0;        return 0 == r ? 1 : r; // packet handled    }}

(4)如果是1对1的RTP包,直接就反序列化即可。如收到一个UDP包,有1000字节,就可以解析出这个udp包的rtp信息。通过收到的数据,解析出来可读的RTP Packet。

// RFC3550 RTP: A Transport Protocol for Real-Time Applications// 5.1 RTP Fixed Header Fields (p12)/* 0               1               2               3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|V=2|P|X|   CC  |M|     PT      |      sequence number          |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                           timestamp                           |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                synchronization source (SSRC) identifier       |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+|                 contributing source (CSRC) identifiers        ||                               ....                            |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*/// 通过收到的数据,解析出来可读的RTP packet 反序列化int rtp_packet_deserialize(struct rtp_packet_t *pkt, const void* data, int bytes){    uint32_t i, v;    int hdrlen;    const uint8_t *ptr;    if (bytes < RTP_FIXED_HEADER) // RFC3550 5.1 RTP Fixed Header Fields(p12)        return -1;    ptr = (const unsigned char *)data;    memset(pkt, 0, sizeof(struct rtp_packet_t));    // pkt header    v = nbo_r32(ptr);    pkt->rtp.v = RTP_V(v);    pkt->rtp.p = RTP_P(v);    pkt->rtp.x = RTP_X(v);    pkt->rtp.cc = RTP_CC(v);    pkt->rtp.m = RTP_M(v);    pkt->rtp.pt = RTP_PT(v);    pkt->rtp.seq = RTP_SEQ(v);    pkt->rtp.timestamp = nbo_r32(ptr + 4);    pkt->rtp.ssrc = nbo_r32(ptr + 8);    assert(RTP_VERSION == pkt->rtp.v);      // 调试的时候用    hdrlen = RTP_FIXED_HEADER + pkt->rtp.cc * 4;    // 解析带csrc时的总长度    if (RTP_VERSION != pkt->rtp.v || bytes < hdrlen + (pkt->rtp.x ? 4 : 0) + (pkt->rtp.p ? 1 : 0))        return -1;      // 报错    // pkt contributing source    for (i = 0; i < pkt->rtp.cc; i++)    {        pkt->csrc[i] = nbo_r32(ptr + 12 + i * 4);    }    assert(bytes >= hdrlen);    pkt->payload = (uint8_t*)ptr + hdrlen;      // 跳过头部 拿到payload    pkt->payloadlen = bytes - hdrlen;           // payload长度    // pkt header extension    if (1 == pkt->rtp.x)    {        const uint8_t *rtpext = ptr + hdrlen;        assert(pkt->payloadlen >= 4);        pkt->extension = rtpext + 4;        pkt->reserved = nbo_r16(rtpext);        pkt->extlen = nbo_r16(rtpext + 2) * 4;        if (pkt->extlen + 4 > pkt->payloadlen)        {            assert(0);            return -1;        }        else        {            //有扩展            pkt->payload = rtpext + pkt->extlen + 4;            pkt->payloadlen -= pkt->extlen + 4;        }    }    // padding    if (1 == pkt->rtp.p)    {        uint8_t padding = ptr[bytes - 1];        if (pkt->payloadlen < padding)        {            assert(0);            return -1;        }        else        {            pkt->payloadlen -= padding;        }    }    return 0;}

(5)将视频RTP包解封装为nalu,其原理就是封包的逆向过程,通过不同类型的数据包采用不同的打拆包方式,1对多的RTP拆包,源码如下:

// 5.8. Fragmentation Units (FUs) (p29)/* 0               1               2               3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|  FU indicator |   FU header   |              DON              |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-||                                                               ||                          FU payload                           ||                                                               ||                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                               :   ...OPTIONAL RTP padding     |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+*/static int rtp_h264_unpack_fu(struct rtp_decode_h264_t *unpacker, const uint8_t* ptr, int bytes, uint32_t timestamp, int fu_b){    int r, n;    uint8_t fuheader;    //uint16_t don;    r = 0;    n = fu_b ? 4 : 2;   // payload前面有几个字节是供fu_a或fu_b使用, fu_a只有2个字节; fu_b是4个字节    if (bytes < n || unpacker->size + bytes - n > RTP_PAYLOAD_MAX_SIZE)    {        assert(0);        return -EINVAL; // error    }    if (unpacker->size + bytes - n + 1 /*NALU*/ > unpacker->capacity)    {        void* p = NULL;        int size = unpacker->size + bytes + 1;        size += size / 4 > 128000 ? size / 4 : 128000;        p = realloc(unpacker->ptr, size);        if (!p)        {            // set packet lost flag            unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;            unpacker->size = 0;            return -ENOMEM; // error        }        unpacker->ptr = (uint8_t*)p;        unpacker->capacity = size;    }    fuheader = ptr[1];    //don = nbo_r16(ptr + 2);    if (FU_START(fuheader))//头    {#if 0        if (unpacker->size > 0)        {            unpacker->flags |= RTP_PAYLOAD_FLAG_PACKET_CORRUPT;            unpacker->handler.packet(unpacker->cbparam, unpacker->ptr, unpacker->size, unpacker->timestamp, unpacker->flags);            unpacker->flags = 0;            unpacker->size = 0; // reset        }#endif        unpacker->size = 1; // NAL unit type byte        unpacker->ptr[0] = (ptr[0]/*indicator*/ & 0xE0) | (fuheader & 0x1F);        assert(H264_NAL(unpacker->ptr[0]) > 0 && H264_NAL(unpacker->ptr[0]) < 24);    }    else    {        if (0 == unpacker->size)//中间包        {            unpacker->flags = RTP_PAYLOAD_FLAG_PACKET_LOST;            return 0; // packet discard        }        assert(unpacker->size > 0);    }    unpacker->timestamp = timestamp;    if (bytes > n)    {        assert(unpacker->capacity >= unpacker->size + bytes - n);        memmove(unpacker->ptr + unpacker->size, ptr + n, bytes - n);        unpacker->size += bytes - n;    }    if(FU_END(fuheader))//中间过程    {        if(unpacker->size > 0)      // 多次传入数据后等到FU_END的时候难道一个完整的nalu            r = unpacker->handler.packet(unpacker->cbparam, unpacker->ptr, unpacker->size, timestamp, unpacker->flags);        unpacker->flags = 0;        unpacker->size = 0; // reset    }    return 0 == r ? 1 : r; // packet handled}

(6)函数unpacker->handler.packet(unpacker->cbparam, (const uint8_t*)pkt.payload, pkt.payloadlen, pkt.rtp.timestamp, unpacker->flags),也会回调用户自定义的函数去写入文件,注意:写文件前,需要加上startcode。源码如下:

static int rtp_decode_packet(void* param, const void *packet, int bytes, uint32_t timestamp, int flags){    static const uint8_t start_code[4] = { 0, 0, 0, 1 };    struct rtp_h264_test_t* ctx = (struct rtp_h264_test_t*)param;    static uint8_t buffer[2 * 1024 * 1024];    assert(bytes + 4 < sizeof(buffer));    assert(0 == flags);    size_t size = 0;    if (0 == strcmp("H264", ctx->encoding) || 0 == strcmp("H265", ctx->encoding))    {        memcpy(buffer, start_code, sizeof(start_code));//添加startcode        size += sizeof(start_code);    }    else if (0 == strcasecmp("mpeg4-generic", ctx->encoding))    {        int len = bytes + 7;        uint8_t profile = 2;        uint8_t sampling_frequency_index = 4;        uint8_t channel_configuration = 2;        buffer[0] = 0xFF; /* 12-syncword */        buffer[1] = 0xF0 /* 12-syncword */ | (0 << 3)/*1-ID*/ | (0x00 << 2) /*2-layer*/ | 0x01 /*1-protection_absent*/;        buffer[2] = ((profile - 1) << 6) | ((sampling_frequency_index & 0x0F) << 2) | ((channel_configuration >> 2) & 0x01);        buffer[3] = ((channel_configuration & 0x03) << 6) | ((len >> 11) & 0x03); /*0-original_copy*/ /*0-home*/ /*0-copyright_identification_bit*/ /*0-copyright_identification_start*/        buffer[4] = (uint8_t)(len >> 3);        buffer[5] = ((len & 0x07) << 5) | 0x1F;        buffer[6] = 0xFC | ((len / 1024) & 0x03);        size = 7;    }    memcpy(buffer + size, packet, bytes);    size += bytes;    printf("nalu get -> bytes:%d, timestamp:%u\n", size, timestamp);    // TODO:    // check media file    fwrite(buffer, 1, size, ctx->out_file);}

4.总结

本篇文章主要通过实战过程中源码的方式,对RTP打包和拆包进行了详细分析,并用代码实现了前面文章讲的原理。结合前面的文章,能够更好的理解整个过程,希望能够帮助到大家。欢迎关注,收藏,转发,分享。

后期关于项目知识,也会更新在微信公众号“记录世界 from antonio”,欢迎关注

标签: #解包封包教程 #解包封包什么意思