前言:
现时你们对“nginx代理openfire”大体比较珍视,我们都需要学习一些“nginx代理openfire”的相关资讯。那么小编同时在网上网罗了一些对于“nginx代理openfire””的相关内容,希望看官们能喜欢,同学们快快来学习一下吧!一 问题背景
平台端购置一批裸代理,来做广告异地展现审核。从外部购置的代理,使用方式为:
通过给定的HTTP 的 API 提取代理 IP:PORT,返回的结果会给出代理的有效时长 3~5 分钟,以及代理所属地域;从提取的代理中,选取指定地域,添加认证信息,请求获取结果;
本文设计实现一个通过的代理网关:
管理维护代理资源,并做代理的认证鉴权;对外暴露统一的代理入口,而非动态变化的代理IP:PORT;流量过滤及限流,比如:静态资源不走代理;
本文重点在代理网关本身的设计与实现,而非代理资源的管理与维护。
注:本文包含大量可执行的JAVA代码以解释代理相关的原理
二 技术路线
本文的技术路线。在实现代理网关之前,首先介绍下代理相关的原理及如何实现
透明代理;非透明代理;透明的上游代理;非透明的上游代理;
最后,本文要构建代理网关,本质上就是一个非透明的上游代理,并给出详细的设计与实现。
1 透明代理
透明代理是代理网关的基础,本文采用JAVA原生的NIO进行详细介绍。在实现代理网关时,实际使用的为NETTY框架。原生NIO的实现对理解NETTY的实现有帮助。
透明代理设计三个交互方,客户端、代理服务、服务端,其原理是:
代理服务在收到连接请求时,判定:如果是CONNECT请求,需要回应代理连接成功消息到客户端;CONNECT请求回应结束后,代理服务需要连接到CONNECT指定的远程服务器,然后直接转发客户端和远程服务通信;代理服务在收到非CONNECT请求时,需要解析出请求的远程服务器,然后直接转发客户端和远程服务通信;
需要注意的点是:
通常HTTPS请求,在通过代理前,会发送CONNECT请求;连接成功后,会在信道上进行加密通信的握手协议;因此连接远程的时机是在CONNECT请求收到时,因为此后是加密数据;透明代理在收到CONNECT请求时,不需要传递到远程服务(远程服务不识别此请求);透明代理在收到非CONNECT请求时,要无条件转发;
完整的透明代理的实现不到约300行代码,完整摘录如下:
@Slf4jpublic class SimpleTransProxy { public static void main(String[] args) throws IOException { int port = 8006; ServerSocketChannel localServer = ServerSocketChannel.open(); localServer.bind(new InetSocketAddress(port)); Reactor reactor = new Reactor(); // REACTOR线程 GlobalThreadPool.REACTOR_EXECUTOR.submit(reactor::run); // WORKER单线程调试 while (localServer.isOpen()) { // 此处阻塞等待连接 SocketChannel remoteClient = localServer.accept(); // 工作线程 GlobalThreadPool.WORK_EXECUTOR.submit(new Runnable() { @SneakyThrows @Override public void run() { // 代理到远程 SocketChannel remoteServer = new ProxyHandler().proxy(remoteClient); // 透明传输 reactor.pipe(remoteClient, remoteServer) .pipe(remoteServer, remoteClient); } }); } }}@Dataclass ProxyHandler { private String method; private String host; private int port; private SocketChannel remoteServer; private SocketChannel remoteClient; /** * 原始信息 */ private List<ByteBuffer> buffers = new ArrayList<>(); private StringBuilder stringBuilder = new StringBuilder(); /** * 连接到远程 * @param remoteClient * @return * @throws IOException */ public SocketChannel proxy(SocketChannel remoteClient) throws IOException { this.remoteClient = remoteClient; connect(); return this.remoteServer; } public void connect() throws IOException { // 解析METHOD, HOST和PORT beforeConnected(); // 链接REMOTE SERVER createRemoteServer(); // CONNECT请求回应,其他请求WRITE THROUGH afterConnected(); } protected void beforeConnected() throws IOException { // 读取HEADER readAllHeader(); // 解析HOST和PORT parseRemoteHostAndPort(); } /** * 创建远程连接 * @throws IOException */ protected void createRemoteServer() throws IOException { remoteServer = SocketChannel.open(new InetSocketAddress(host, port)); } /** * 连接建立后预处理 * @throws IOException */ protected void afterConnected() throws IOException { // 当CONNECT请求时,默认写入200到CLIENT if ("CONNECT".equalsIgnoreCase(method)) { // CONNECT默认为443端口,根据HOST再解析 remoteClient.write(ByteBuffer.wrap("HTTP/1.0 200 Connection Established\r\nProxy-agent: nginx\r\n\r\n".getBytes())); } else { writeThrouth(); } } protected void writeThrouth() { buffers.forEach(byteBuffer -> { try { remoteServer.write(byteBuffer); } catch (IOException e) { e.printStackTrace(); } }); } /** * 读取请求内容 * @throws IOException */ protected void readAllHeader() throws IOException { while (true) { ByteBuffer clientBuffer = newByteBuffer(); int read = remoteClient.read(clientBuffer); clientBuffer.flip(); appendClientBuffer(clientBuffer); if (read < clientBuffer.capacity()) { break; } } } /** * 解析出HOST和PROT * @throws IOException */ protected void parseRemoteHostAndPort() throws IOException { // 读取第一批,获取到METHOD method = parseRequestMethod(stringBuilder.toString()); // 默认为80端口,根据HOST再解析 port = 80; if ("CONNECT".equalsIgnoreCase(method)) { port = 443; } this.host = parseHost(stringBuilder.toString()); URI remoteServerURI = URI.create(host); host = remoteServerURI.getHost(); if (remoteServerURI.getPort() > 0) { port = remoteServerURI.getPort(); } } protected void appendClientBuffer(ByteBuffer clientBuffer) { buffers.add(clientBuffer); stringBuilder.append(new String(clientBuffer.array(), clientBuffer.position(), clientBuffer.limit())); } protected static ByteBuffer newByteBuffer() { // buffer必须大于7,保证能读到method return ByteBuffer.allocate(128); } private static String parseRequestMethod(String rawContent) { // create uri return rawContent.split("\r\n")[0].split(" ")[0]; } private static String parseHost(String rawContent) { String[] headers = rawContent.split("\r\n"); String host = "host:"; for (String header : headers) { if (header.length() > host.length()) { String key = header.substring(0, host.length()); String value = header.substring(host.length()).trim(); if (host.equalsIgnoreCase(key)) { if (!value.startsWith(";) && !value.startsWith(";)) { value = "; + value; } return value; } } } return ""; }}@Slf4j@Dataclass Reactor { private Selector selector; private volatile boolean finish = false; @SneakyThrows public Reactor() { selector = Selector.open(); } @SneakyThrows public Reactor pipe(SocketChannel from, SocketChannel to) { from.configureBlocking(false); from.register(selector, SelectionKey.OP_READ, new SocketPipe(this, from, to)); return this; } @SneakyThrows public void run() { try { while (!finish) { if (selector.selectNow() > 0) { Iterator<SelectionKey> it = selector.selectedKeys().iterator(); while (it.hasNext()) { SelectionKey selectionKey = it.next(); if (selectionKey.isValid() && selectionKey.isReadable()) { ((SocketPipe) selectionKey.attachment()).pipe(); } it.remove(); } } } } finally { close(); } } @SneakyThrows public synchronized void close() { if (finish) { return; } finish = true; if (!selector.isOpen()) { return; } for (SelectionKey key : selector.keys()) { closeChannel(key.channel()); key.cancel(); } if (selector != null) { selector.close(); } } public void cancel(SelectableChannel channel) { SelectionKey key = channel.keyFor(selector); if (Objects.isNull(key)) { return; } key.cancel(); } @SneakyThrows public void closeChannel(Channel channel) { SocketChannel socketChannel = (SocketChannel)channel; if (socketChannel.isConnected() && socketChannel.isOpen()) { socketChannel.shutdownOutput(); socketChannel.shutdownInput(); } socketChannel.close(); }}@Data@AllArgsConstructorclass SocketPipe { private Reactor reactor; private SocketChannel from; private SocketChannel to; @SneakyThrows public void pipe() { // 取消监听 clearInterestOps(); GlobalThreadPool.PIPE_EXECUTOR.submit(new Runnable() { @SneakyThrows @Override public void run() { int totalBytesRead = 0; ByteBuffer byteBuffer = ByteBuffer.allocate(1024); while (valid(from) && valid(to)) { byteBuffer.clear(); int bytesRead = from.read(byteBuffer); totalBytesRead = totalBytesRead + bytesRead; byteBuffer.flip(); to.write(byteBuffer); if (bytesRead < byteBuffer.capacity()) { break; } } if (totalBytesRead < 0) { reactor.closeChannel(from); reactor.cancel(from); } else { // 重置监听 resetInterestOps(); } } }); } protected void clearInterestOps() { from.keyFor(reactor.getSelector()).interestOps(0); to.keyFor(reactor.getSelector()).interestOps(0); } protected void resetInterestOps() { from.keyFor(reactor.getSelector()).interestOps(SelectionKey.OP_READ); to.keyFor(reactor.getSelector()).interestOps(SelectionKey.OP_READ); } private boolean valid(SocketChannel channel) { return channel.isConnected() && channel.isRegistered() && channel.isOpen(); }}
以上,借鉴NETTY:
首先初始化REACTOR线程,然后开启代理监听,当收到代理请求时处理。代理服务在收到代理请求时,首先做代理的预处理,然后又SocketPipe做客户端和远程服务端双向转发。代理预处理,首先读取第一个HTTP请求,解析出METHOD, HOST, PORT。如果是CONNECT请求,发送回应Connection Established,然后连接远程服务端,并返回SocketChannel如果是非CONNECT请求,连接远程服务端,写入原始请求,并返回SocketChannelSocketPipe在客户端和远程服务端,做双向的转发;其本身是将客户端和服务端的SocketChannel注册到REACTORREACTOR在监测到READABLE的CHANNEL,派发给SocketPipe做双向转发。
测试
代理的测试比较简单,指向代码后,代理服务监听8006端口,此时:
curl -x 'localhost:8006' 测试HTTP请求
curl -x 'localhost:8006' 测试HTTPS请求
注意,此时代理服务代理了HTTPS请求,但是并不需要-k选项,指示非安全的代理。因为代理服务本身并没有作为一个中间人,并没有解析出客户端和远程服务端通信的内容。在非透明代理时,需要解决这个问题。
2 非透明代理
非透明代理,需要解析出客户端和远程服务端传输的内容,并做相应的处理。
当传输为HTTP协议时,SocketPipe传输的数据即为明文的数据,可以拦截后直接做处理。
当传输为HTTPS协议时,SocketPipe传输的有效数据为加密数据,并不能透明处理。
另外,无论是传输的HTTP协议还是HTTPS协议,SocketPipe读到的都为非完整的数据,需要做聚批的处理。
SocketPipe聚批问题,可以采用类似BufferedInputStream对InputStream做Decorate的模式来实现,相对比较简单;详细可以参考NETTY的HttpObjectAggregator;HTTPS原始请求和结果数据的加密和解密的处理,需要实现的NIO的SOCKET CHANNEL;SslSocketChannel封装原理
考虑到目前JDK自带的NIO的SocketChannel并不支持SSL;已有的SSLSocket是阻塞的OIO。如图:
可以看出
每次入站数据和出站数据都需要 SSL SESSION 做握手;入站数据做解密,出站数据做加密;握手,数据加密和数据解密是统一的一套状态机;
以下,代码实现 SslSocketChannel
public class SslSocketChannel { /** * 握手加解密需要的四个存储 */ protected ByteBuffer myAppData; // 明文 protected ByteBuffer myNetData; // 密文 protected ByteBuffer peerAppData; // 明文 protected ByteBuffer peerNetData; // 密文 /** * 握手加解密过程中用到的异步执行器 */ protected ExecutorService executor = Executors.newSingleThreadExecutor(); /** * 原NIO 的 CHANNEL */ protected SocketChannel socketChannel; /** * SSL 引擎 */ protected SSLEngine engine; public SslSocketChannel(SSLContext context, SocketChannel socketChannel, boolean clientMode) throws Exception { // 原始的NIO SOCKET this.socketChannel = socketChannel; // 初始化BUFFER SSLSession dummySession = context.createSSLEngine().getSession(); myAppData = ByteBuffer.allocate(dummySession.getApplicationBufferSize()); myNetData = ByteBuffer.allocate(dummySession.getPacketBufferSize()); peerAppData = ByteBuffer.allocate(dummySession.getApplicationBufferSize()); peerNetData = ByteBuffer.allocate(dummySession.getPacketBufferSize()); dummySession.invalidate(); engine = context.createSSLEngine(); engine.setUseClientMode(clientMode); engine.beginHandshake(); } /** * 参考 * 实现的 SSL 的握手协议 * @return * @throws IOException */ protected boolean doHandshake() throws IOException { SSLEngineResult result; HandshakeStatus handshakeStatus; int appBufferSize = engine.getSession().getApplicationBufferSize(); ByteBuffer myAppData = ByteBuffer.allocate(appBufferSize); ByteBuffer peerAppData = ByteBuffer.allocate(appBufferSize); myNetData.clear(); peerNetData.clear(); handshakeStatus = engine.getHandshakeStatus(); while (handshakeStatus != HandshakeStatus.FINISHED && handshakeStatus != HandshakeStatus.NOT_HANDSHAKING) { switch (handshakeStatus) { case NEED_UNWRAP: if (socketChannel.read(peerNetData) < 0) { if (engine.isInboundDone() && engine.isOutboundDone()) { return false; } try { engine.closeInbound(); } catch (SSLException e) { log.debug("收到END OF STREAM,关闭连接.", e); } engine.closeOutbound(); handshakeStatus = engine.getHandshakeStatus(); break; } peerNetData.flip(); try { result = engine.unwrap(peerNetData, peerAppData); peerNetData.compact(); handshakeStatus = result.getHandshakeStatus(); } catch (SSLException sslException) { engine.closeOutbound(); handshakeStatus = engine.getHandshakeStatus(); break; } switch (result.getStatus()) { case OK: break; case BUFFER_OVERFLOW: peerAppData = enlargeApplicationBuffer(engine, peerAppData); break; case BUFFER_UNDERFLOW: peerNetData = handleBufferUnderflow(engine, peerNetData); break; case CLOSED: if (engine.isOutboundDone()) { return false; } else { engine.closeOutbound(); handshakeStatus = engine.getHandshakeStatus(); break; } default: throw new IllegalStateException("无效的握手状态: " + result.getStatus()); } break; case NEED_WRAP: myNetData.clear(); try { result = engine.wrap(myAppData, myNetData); handshakeStatus = result.getHandshakeStatus(); } catch (SSLException sslException) { engine.closeOutbound(); handshakeStatus = engine.getHandshakeStatus(); break; } switch (result.getStatus()) { case OK : myNetData.flip(); while (myNetData.hasRemaining()) { socketChannel.write(myNetData); } break; case BUFFER_OVERFLOW: myNetData = enlargePacketBuffer(engine, myNetData); break; case BUFFER_UNDERFLOW: throw new SSLException("加密后消息内容为空,报错"); case CLOSED: try { myNetData.flip(); while (myNetData.hasRemaining()) { socketChannel.write(myNetData); } peerNetData.clear(); } catch (Exception e) { handshakeStatus = engine.getHandshakeStatus(); } break; default: throw new IllegalStateException("无效的握手状态: " + result.getStatus()); } break; case NEED_TASK: Runnable task; while ((task = engine.getDelegatedTask()) != null) { executor.execute(task); } handshakeStatus = engine.getHandshakeStatus(); break; case FINISHED: break; case NOT_HANDSHAKING: break; default: throw new IllegalStateException("无效的握手状态: " + handshakeStatus); } } return true; } /** * 参考 * 实现的 SSL 的传输读取协议 * @param consumer * @throws IOException */ public void read(Consumer<ByteBuffer> consumer) throws IOException { // BUFFER初始化 peerNetData.clear(); int bytesRead = socketChannel.read(peerNetData); if (bytesRead > 0) { peerNetData.flip(); while (peerNetData.hasRemaining()) { peerAppData.clear(); SSLEngineResult result = engine.unwrap(peerNetData, peerAppData); switch (result.getStatus()) { case OK: log.debug("收到远程的返回结果消息为:" + new String(peerAppData.array(), 0, peerAppData.position())); consumer.accept(peerAppData); peerAppData.flip(); break; case BUFFER_OVERFLOW: peerAppData = enlargeApplicationBuffer(engine, peerAppData); break; case BUFFER_UNDERFLOW: peerNetData = handleBufferUnderflow(engine, peerNetData); break; case CLOSED: log.debug("收到远程连接关闭消息."); closeConnection(); return; default: throw new IllegalStateException("无效的握手状态: " + result.getStatus()); } } } else if (bytesRead < 0) { log.debug("收到END OF STREAM,关闭连接."); handleEndOfStream(); } } public void write(String message) throws IOException { write(ByteBuffer.wrap(message.getBytes())); } /** * 参考 * 实现的 SSL 的传输写入协议 * @param message * @throws IOException */ public void write(ByteBuffer message) throws IOException { myAppData.clear(); myAppData.put(message); myAppData.flip(); while (myAppData.hasRemaining()) { myNetData.clear(); SSLEngineResult result = engine.wrap(myAppData, myNetData); switch (result.getStatus()) { case OK: myNetData.flip(); while (myNetData.hasRemaining()) { socketChannel.write(myNetData); } log.debug("写入远程的消息为: {}", message); break; case BUFFER_OVERFLOW: myNetData = enlargePacketBuffer(engine, myNetData); break; case BUFFER_UNDERFLOW: throw new SSLException("加密后消息内容为空."); case CLOSED: closeConnection(); return; default: throw new IllegalStateException("无效的握手状态: " + result.getStatus()); } } } /** * 关闭连接 * @throws IOException */ public void closeConnection() throws IOException { engine.closeOutbound(); doHandshake(); socketChannel.close(); executor.shutdown(); } /** * END OF STREAM(-1)默认是关闭连接 * @throws IOException */ protected void handleEndOfStream() throws IOException { try { engine.closeInbound(); } catch (Exception e) { log.error("END OF STREAM 关闭失败.", e); } closeConnection(); }}
以上:
基于 SSL 协议,实现统一的握手动作;分别实现读取的解密,和写入的加密方法;将 SslSocketChannel 实现为 SocketChannel的Decorator;
SslSocketChannel测试服务端
基于以上封装,简单测试服务端如下
@Slf4jpublic class NioSslServer { public static void main(String[] args) throws Exception { NioSslServer sslServer = new NioSslServer("127.0.0.1", 8006); sslServer.start(); // 使用 curl -vv -k '; 连接 } private SSLContext context; private Selector selector; public NioSslServer(String hostAddress, int port) throws Exception { // 初始化SSL Context context = serverSSLContext(); // 注册监听器 selector = SelectorProvider.provider().openSelector(); ServerSocketChannel serverSocketChannel = ServerSocketChannel.open(); serverSocketChannel.configureBlocking(false); serverSocketChannel.socket().bind(new InetSocketAddress(hostAddress, port)); serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT); } public void start() throws Exception { log.debug("等待连接中."); while (true) { selector.select(); Iterator<SelectionKey> selectedKeys = selector.selectedKeys().iterator(); while (selectedKeys.hasNext()) { SelectionKey key = selectedKeys.next(); selectedKeys.remove(); if (!key.isValid()) { continue; } if (key.isAcceptable()) { accept(key); } else if (key.isReadable()) { ((SslSocketChannel)key.attachment()).read(buf->{}); // 直接回应一个OK ((SslSocketChannel)key.attachment()).write("HTTP/1.1 200 OK\r\nContent-Type: text/plain\r\n\r\nOK\r\n\r\n"); ((SslSocketChannel)key.attachment()).closeConnection(); } } } } private void accept(SelectionKey key) throws Exception { log.debug("接收新的请求."); SocketChannel socketChannel = ((ServerSocketChannel)key.channel()).accept(); socketChannel.configureBlocking(false); SslSocketChannel sslSocketChannel = new SslSocketChannel(context, socketChannel, false); if (sslSocketChannel.doHandshake()) { socketChannel.register(selector, SelectionKey.OP_READ, sslSocketChannel); } else { socketChannel.close(); log.debug("握手失败,关闭连接."); } }}
以上:
由于是NIO,简单的测试需要用到NIO的基础组件Selector进行测试;首先初始化ServerSocketChannel,监听8006端口;接收到请求后,将SocketChannel封装为SslSocketChannel,注册到Selector接收到数据后,通过SslSocketChannel做read和write;
SslSocketChannel测试客户端
基于以上服务端封装,简单测试客户端如下
@Slf4jpublic class NioSslClient { public static void main(String[] args) throws Exception { NioSslClient sslClient = new NioSslClient("httpbin.org", 443); sslClient.connect(); // 请求 '; } private String remoteAddress; private int port; private SSLEngine engine; private SocketChannel socketChannel; private SSLContext context; /** * 需要远程的HOST和PORT * @param remoteAddress * @param port * @throws Exception */ public NioSslClient(String remoteAddress, int port) throws Exception { this.remoteAddress = remoteAddress; this.port = port; context = clientSSLContext(); engine = context.createSSLEngine(remoteAddress, port); engine.setUseClientMode(true); } public boolean connect() throws Exception { socketChannel = SocketChannel.open(); socketChannel.configureBlocking(false); socketChannel.connect(new InetSocketAddress(remoteAddress, port)); while (!socketChannel.finishConnect()) { // 通过REACTOR,不会出现等待情况 //log.debug("连接中.."); } SslSocketChannel sslSocketChannel = new SslSocketChannel(context, socketChannel, true); sslSocketChannel.doHandshake(); // 握手完成后,开启SELECTOR Selector selector = SelectorProvider.provider().openSelector(); socketChannel.register(selector, SelectionKey.OP_READ, sslSocketChannel); // 写入请求 sslSocketChannel.write("GET /get HTTP/1.1\r\n" + "Host: httpbin.org:443\r\n" + "User-Agent: curl/7.62.0\r\n" + "Accept: */*\r\n" + "\r\n"); // 读取结果 while (true) { selector.select(); Iterator<SelectionKey> selectedKeys = selector.selectedKeys().iterator(); while (selectedKeys.hasNext()) { SelectionKey key = selectedKeys.next(); selectedKeys.remove(); if (key.isValid() && key.isReadable()) { ((SslSocketChannel)key.attachment()).read(buf->{ log.info("{}", new String(buf.array(), 0, buf.position())); }); ((SslSocketChannel)key.attachment()).closeConnection(); return true; } } } }}
以上:
客户端的封装测试,是为了验证封装 SSL 协议双向都是OK的,在后文的非透明上游代理中,会同时使用 SslSocketChannel做服务端和客户端以上封装与服务端封装类似,不同的是初始化 SocketChannel,做connect而非bind总结
以上:
非透明代理需要拿到完整的请求数据,可以通过 Decorator模式,聚批实现;非透明代理需要拿到解密后的HTTPS请求数据,可以通过SslSocketChannel对原始的SocketChannel做封装实现;最后,拿到请求后,做相应的处理,最终实现非透明的代理。3 透明上游代理
透明上游代理相比透明代理要简单,区别是
透明代理需要响应 CONNECT请求,透明上游代理不需要,直接转发即可;透明代理需要解析CONNECT请求中的HOST和PORT,并连接服务端;透明上游代理只需要连接下游代理的IP:PORT,直接转发请求即可;透明的上游代理,只是一个简单的SocketChannel管道;确定下游的代理服务端,连接转发请求;
只需要对透明代理做以上简单的修改,即可实现透明的上游代理。
4 非透明上游代理
非透明的上游代理,相比非透明的代理要复杂一些
以上,分为四个组件:客户端,代理服务(ServerHandler),代理服务(ClientHandler),服务端
如果是HTTP的请求,数据直接通过 客户端<->ServerHandler<->ClientHandler<->服务端,代理网关只需要做简单的请求聚批,就可以应用相应的管理策略;如果是HTTPS请求,代理作为客户端和服务端的中间人,只能拿到加密的数据;因此,代理网关需要作为HTTPS的服务方与客户端通信;然后作为HTTPS的客户端与服务端通信;代理作为HTTPS服务方时,需要考虑到其本身是个非透明的代理,需要实现非透明代理相关的协议;代理作为HTTPS客户端时,需要考虑到其下游是个透明的代理,真正的服务方是客户端请求的服务方;三 设计与实现
本文需要构建的是非透明上游代理,以下采用NETTY框架给出详细的设计实现。上文将统一代理网关分为两大部分,ServerHandler和ClientHandler,以下
介绍代理网关服务端相关实现;介绍代理网关客户端相关实现;1 代理网关服务端
主要包括
初始化代理网关服务端初始化服务端处理器服务端协议升级与处理
初始化代理网关服务
public void start() { HookedExecutors.newSingleThreadExecutor().submit(() ->{ log.info("开始启动代理服务器,监听端口:{}", auditProxyConfig.getProxyServerPort()); EventLoopGroup bossGroup = new NioEventLoopGroup(auditProxyConfig.getBossThreadCount()); EventLoopGroup workerGroup = new NioEventLoopGroup(auditProxyConfig.getWorkThreadCount()); try { ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .handler(new LoggingHandler(LogLevel.DEBUG)) .childHandler(new ServerChannelInitializer(auditProxyConfig)) .bind(auditProxyConfig.getProxyServerPort()).sync().channel().closeFuture().sync(); } catch (InterruptedException e) { log.error("代理服务器被中断.", e); Thread.currentThread().interrupt(); } finally { bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } }); }
代理网关初始化相对简单,
bossGroup线程组,负责接收请求workerGroup线程组,负责处理接收的请求数据,具体处理逻辑封装在ServerChannelInitializer中。
代理网关服务的请求处理器在 ServerChannelInitializer中定义为
@Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline() .addLast(new HttpRequestDecoder()) .addLast(new HttpObjectAggregator(auditProxyConfig.getMaxRequestSize())) .addLast(new ServerChannelHandler(auditProxyConfig)); }
首先解析HTTP请求,然后做聚批的处理,最后ServerChannelHandler实现代理网关协议;
代理网关协议:
判定是否是CONNECT请求,如果是,会存储CONNECT请求;暂停读取,发送代理成功的响应,并在回应成功后,升级协议;升级引擎,本质上是采用SslSocketChannel对原SocketChannel做透明的封装;最后根据CONNECT请求连接远程服务端;
详细实现为:
@Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { FullHttpRequest request = (FullHttpRequest)msg; try { if (isConnectRequest(request)) { // CONNECT 请求,存储待处理 saveConnectRequest(ctx, request); // 禁止读取 ctx.channel().config().setAutoRead(false); // 发送回应 connectionEstablished(ctx, ctx.newPromise().addListener(future -> { if (future.isSuccess()) { // 升级 if (isSslRequest(request) && !isUpgraded(ctx)) { upgrade(ctx); } // 开放消息读取 ctx.channel().config().setAutoRead(true); ctx.read(); } })); } else { // 其他请求,判定是否已升级 if (!isUpgraded(ctx)) { // 升级引擎 upgrade(ctx); } // 连接远程 connectRemote(ctx, request); } } finally { ctx.fireChannelRead(msg); } }四 总结
本文聚焦于统一代理网关的核心,详细介绍了代理相关的技术原理。
代理网关的管理部分,可以在ServerHandler部分维护,也可以在ClientHandler部分维护;
ServerHandler可以拦截转换请求ClientHanlder可控制请求的出口
注:本文使用Netty的零拷贝;存储请求以解析处理;但并未实现对RESPONSE的处理;也就是RESPONSE是直接通过网关,此方面避免了常见的代理实现,内存泄漏OOM相关问题;
最后,本文实现代理网关后,针对代理的资源和流经代理网关的请求做了相应的控制,主要包括:
当遇到静态资源的请求时,代理网关会直接请求远程服务端,不会通过下游代理当请求HEADER中包含地域标识时,代理网关会尽力保证请求打入指定的地域代理,经由地域代理访问远程服务端
原文链接: