前言:
眼前咱们对“igraph使用教程”大致比较着重,同学们都需要剖析一些“igraph使用教程”的相关内容。那么小编也在网络上汇集了一些关于“igraph使用教程””的相关资讯,希望朋友们能喜欢,咱们一起来学习一下吧!前段时间 NebulaGraph 3.5.0 发布,@**whitewum** 吴老师建议我把前段时间 NebulaGraph 社区里开启的新项目 ng_ai 公开给大家。
所以,就有了这个系列文章,本文是该系列的开篇之作。
ng_ai 是什么
ng_ai 的全名是:Nebulagraph AI Suite,顾名思义,它是在 NebulaGraph 之上跑算法的 Python 套件,希望能给 NebulaGraph 的用户一个自然、简洁的高级 API。简单来说,用很少的代码量就可以执行图上的算法相关的任务。
ng_ai 这个开源项目的目标是,快速迭代、公开讨论、持续演进,一句话概述便是:
Simplifying things in surprising ways.
这个 ng_ai 的专属 url: 可以帮你了解更全面的它。
ng_ai 的特点
为了让 NebulaGraph 社区的小伙伴拥有顺滑的算法体验,ng_ai 有以下特点:
与 NebulaGraph 紧密结合,方便从其中读、写图数据支持多引擎、后端,目前支持 Spark(NebulaGraph Algorithm)、NetworkX,之后会支持 DGL、PyG友好、符合直觉的 API 设计与 NebulaGraph 的 UDF 无缝结合,支持从 Query 中调用 ng_ai 任务友好的自定义算法接口,方便用户自己实现算法(尚未完成)一键试玩环境(基于 Docker Extensions)你可以这么用 ng_ai跑分布式 PageRank 算法
可以在一个大图上,基于 nebula-algorithm 分布式地跑 PageRank 算法,像是这样:
from ng_ai import NebulaReader# scan 模式,通过 Spark 引擎读取数据reader = NebulaReader(engine="spark")reader.scan(edge="follow", props="degree")df = reader.read()# 运行 PageRank 算法pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10)写回算法结果到 NebulaGraph
假设我们要跑一个 Label Propagation 算法,然后把结果写回 NebulaGraph,我们可以这么做:
先确保结果中要写回图数据库的数据 Schema 已经创建好了,像是下面的示例,便是写到 label_propagation.cluster_id 字段里:
CREATE TAG IF NOT EXISTS label_propagation ( cluster_id string NOT NULL);
下面,我们来看下具体流程。执行算法:
df_result = df.algo.label_propagation()
再看一下结果的 Schema:
df_result.printSchema()root |-- _id: string (nullable = false) |-- lpa: string (nullable = false)
参考下面的代码,把 lpa 的结果写回 NebulaGraph 中的 cluster_id 字段里({"lpa": "cluster_id"}):
from ng_ai import NebulaWriterfrom ng_ai.config import NebulaGraphConfigconfig = NebulaGraphConfig()writer = NebulaWriter( data=df_result, sink="nebulagraph_vertex", config=config, engine="spark")# 将 lpa 同 cluster_id 进行映射properties = {"lpa": "cluster_id"}writer.set_options( tag="label_propagation", vid_field="_id", properties=properties, batch_size=256, write_mode="insert",)# 将数据写回到 NebulaGraphwriter.write()
最后,验证一下:
USE basketballplayer;MATCH (v:label_propagation)RETURN id(v), v.label_propagation.cluster_id LIMIT 3;
结果:
+-------------+--------------------------------+| id(v) | v.label_propagation.cluster_id |+-------------+--------------------------------+| "player103" | "player101" || "player113" | "player129" || "player121" | "player129" |+-------------+--------------------------------+
更详细的例子参考:ng_ai/examples
通过 nGQL 调用算法
自 NebulaGraph v3.5.0 开始,用户可从 nGQL 中调用自己实现的函数。而 ng_ai 也用这个能力来实现了一个自己的 ng_ai 函数,让它从 nGQL 中调用 ng_ai 的算法,例如:
-- 准备将要写入数据的 SchemaUSE basketballplayer;CREATE TAG IF NOT EXISTS pagerank(pagerank string);:sleep 20;-- 回调 ng_ai()RETURN ng_ai("pagerank", ["follow"], ["degree"], "spark", {space: "basketballplayer", max_iter: 10}, {write_mode: "insert"})
更详细的例子参考:ng_ai/examples
单机运行算法
在单机、本地的环境,ng_ai 支持基于 NetworkX 运行算法。
举个例子,读取图为 ng_ai graph 对象:
from ng_ai import NebulaReaderfrom ng_ai.config import NebulaGraphConfig# query 模式,通过 NebulaGraph 或是 NetworkX 引擎读取数据config_dict = { "graphd_hosts": "graphd:9669", "user": "root", "password": "nebula", "space": "basketballplayer",}config = NebulaGraphConfig(**config_dict)reader = NebulaReader(engine="nebula", config=config)reader.query(edges=["follow", "serve"], props=[["degree"], []])g = reader.read()
查看、画图:
g.show(10)g.draw()
运行算法:
pr_result = g.algo.pagerank(reset_prob=0.15, max_iter=10)
写回 NebulaGraph:
from ng_ai import NebulaWriterwriter = NebulaWriter( data=pr_result, sink="nebulagraph_vertex", config=config, engine="nebula",)# 待写入的属性properties = ["pagerank"]writer.set_options( tag="pagerank", properties=properties, batch_size=256, write_mode="insert",)# 将数据写回到 NebulaGraphwriter.write()
其他算法:
# 获取所有算法g.algo.get_all_algo()# 获取相关算法的帮助信息help(g.algo.node2vec)# 调用算法g.algo.node2vec()
更详细的例子参考:ng_ai/examples
可视化图算法结果
这里演示一个 NetworkX 引擎情况下,计算 Louvain、PageRank 并可视化的例子:
先执行两个图算法:
pr_result = g.algo.pagerank(reset_prob=0.15, max_iter=10)louvain_result = g.algo.louvain()
再手写一个画图好看的函数:
from matplotlib.colors import ListedColormapdef draw_graph_louvain_pr(G, pr_result, louvain_result, colors=["#1984c5", "#22a7f0", "#63bff0", "#a7d5ed", "#e2e2e2", "#e1a692", "#de6e56", "#e14b31", "#c23728"]): # 设定节点的位置 pos = nx.spring_layout(G) # 新建一个图形并设置坐标轴 fig, ax = plt.subplots(figsize=(35, 15)) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) # 从颜色列表中创建一个 colormap cmap = ListedColormap(colors) # 将图中的节点和边进行绘图 node_colors = [louvain_result[node] for node in G.nodes()] node_sizes = [70000 * pr_result[node] for node in G.nodes()] nx.draw_networkx_nodes(G, pos=pos, ax=ax, node_color=node_colors, node_size=node_sizes, cmap=cmap, vmin=0, vmax=max(louvain_result.values())) nx.draw_networkx_edges(G, pos=pos, ax=ax, edge_color='gray', width=1, connectionstyle='arc3, rad=0.2', arrowstyle='-|>', arrows=True) # 提取边数据中的 label 数据作为字典 edge_labels = nx.get_edge_attributes(G, 'label') # 在图中加入边的 label 数据 for edge, label in edge_labels.items(): ax.text((pos[edge[0]][0] + pos[edge[1]][0])/2, (pos[edge[0]][1] + pos[edge[1]][1])/2, label, fontsize=12, color='black', ha='center', va='center') # 在图中加入点的 label 数据 node_labels = {n: G.nodes[n]['label'] if 'label' in G.nodes[n] else n for n in G.nodes()} nx.draw_networkx_labels(G, pos=pos, ax=ax, labels=node_labels, font_size=12, font_color='black') # 为同社区数据添加相同颜色 sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=0, vmax=max(louvain_result.values()))) sm.set_array([]) cbar = plt.colorbar(sm, ax=ax, ticks=range(max(louvain_result.values()) + 1), shrink=0.5) cbar.ax.set_yticklabels([f'Community {i}' for i in range(max(louvain_result.values()) + 1)]) # 数据展示 plt.show()draw_graph_louvain_pr(G, pr_result=pr_result, louvain_result=louvain_result)
效果如下所示:
更详细的例子参考:ng_ai/examples
更方便的 Notebook 操作 NebulaGraph
结合 NebulaGraph 的 Jupyter Notebook 插件: ,我们还可以更便捷地操作 NebulaGraph:
可通过 ng_ai 的 extras 在 Jupyter Notbook 中安装插件:
%pip install ng_ai[jupyter]%load_ext ngql
当然,也可以单独安装插件:
%pip install ipython-ngql%load_ext ngql
安装完成后,就可以在 Notebook 里直接使用 %ngql 命令来执行 nGQL 语句:
%ngql --address 127.0.0.1 --port 9669 --user root --password nebula%ngql USE basketballplayer;%ngql MATCH (v:player{name:"Tim Duncan"})-->(v2:player) RETURN v2.player.name AS Name;
注,多行的 Query 用两个百分号就好了 %%ngql
最后,我们还能在 Jupyter Notebook 里直接可视化渲染结果!只需要 %ng_draw 就可以啦!
%ngql match p=(:player)-[]->() return p LIMIT 5%ng_draw
效果如下:
未来工作
现在 ng_ai 还在开发中,我们还有很多工作要做:
[ ] 完善 Reader 模式,现在 NebulaGraph / NetworkX 的读取数据只支持 Query-Mode,还需要支持 Scan-Mode[ ] 实现基于 dgl(GNN)的链路预测、节点分类等算法,例如:
model = g.algo.gnn_link_prediction()result = model.train()# query src, dst to be predictedmodel.predict(src_vertex, dst_vertices)[ ] UDA,自定义算法[ ] 快速部署工具
ng_ai 完全 build in public,欢迎社区的大家们来参与,一起来完善 ng_ai,让 NebulaGraph 上的 AI 算法更加简单、易用!
试玩 ng_ai
我们已经准备好了一键部署的 NebulaGraph + NebulaGraph Studio + ng_ai in Jupyter 的环境,只需要大家从 Docker Desktop 的 Extension(扩展)中搜索 NebulaGraph,就可以试玩了。
安装 NebulaGraph Docker 插件
在 Docker Desktop 的插件市场搜索 NebulaGraph,点击安装:
安装 ng_ai Playground
进入 NebulaGraph 插件,点击 Install NX Mode,安装 ng_ai 的 NetworkX Playground,通常要等几分钟等待安装完成。
进入 NetworkX Playground
点击 Jupyter NB NetworkX,进入 NetworkX Playground。
ng_ai 的架构
ng_ai 的架构如下,它的核心模块有:
Reader:负责从 NebulaGraph 读取数据Writer:负责将数据写入 NebulaGraphEngine:负责适配不同运行时,例如 Spark、DGL、NetowrkX 等Algo:算法模块,例如 PageRank、Louvain、GNN_Link_Predict 等
此外,为了支持 nGQL 中的调用,还有两个模块:
ng_ai-udf:负责将 UDF 注册到 NebulaGraph,接受 ng_ai 的 Query 调用,访问 ng_ai APIng_ai-api:ng_ai 的 API 服务,接受 UDF 的调用,访问 ng_ai 核心模块
┌───────────────────────────────────────────────────┐ │ Spark Cluster │ │ .─────. .─────. .─────. .─────. │ │ ; : ; : ; : ; : │ ┌─▶│ : ; : ; : ; : ; │ │ │ ╲ ╱ ╲ ╱ ╲ ╱ ╲ ╱ │ │ │ `───' `───' `───' `───' │ Algo Spark │ Engine└───────────────────────────────────────────────────┘ │ ┌────────────────────────────────────────────────────┬──────────┐ └──┤ │ │ │ NebulaGraph AI Suite(ngai) │ ngai-api │◀─┐ │ │ │ │ │ └──────────┤ │ │ ┌────────┐ ┌──────┐ ┌────────┐ ┌─────┐ │ │ │ │ Reader │ │ Algo │ │ Writer │ │ GNN │ │ │ ┌───────▶│ └────────┘ └──────┘ └────────┘ └─────┘ │ │ │ │ │ │ │ │ │ │ │ │ ├────────────┴───┬────────┴─────┐ └──────┐ │ │ │ │ ▼ ▼ ▼ ▼ │ │ │ │ ┌─────────────┐ ┌──────────────┐ ┌──────────┐ ┌──────────┐ │ │ │ ┌──┤ │ SparkEngine │ │ NebulaEngine │ │ NetworkX │ │ DGLEngine│ │ │ │ │ │ └─────────────┘ └──────────────┘ └──────────┘ └──────────┘ │ │ │ │ └──────────┬────────────────────────────────────────────────────┘ │ │ │ │ Spark │ │ │ └────────Reader ────────────┐ │ │ Spark Query Mode │ │ │ Reader │ │ │Scan Mode ▼ ┌─────────┐ │ │ ┌───────────────────────────────────────────────────┬─────────┤ ngai-udf│◀─────────────┐ │ │ │ │ └─────────┤ │ │ │ │ NebulaGraph Graph Engine Nebula-GraphD │ ngai-GraphD │ │ │ │ ├──────────────────────────────┬────────────────────┼───────────────────┘ │ │ │ │ │ │ │ │ │ │ NebulaGraph Storage Engine │ │ │ │ │ │ │ │ │ │ └─▶│ Nebula-StorageD │ Nebula-Metad │ │ │ │ │ │ │ │ └──────────────────────────────┴────────────────────┘ │ │ │ │ ┌───────────────────────────────────────────────────────────────────────────────────────┐ │ │ │ RETURN ng_ai("pagerank", ["follow"], ["degree"], "spark", {space:"basketballplayer"}) │──┘ │ └───────────────────────────────────────────────────────────────────────────────────────┘ │ ┌─────────────────────────────────────────────────────────────┐ │ │ from ng_ai import NebulaReader │ │ │ │ │ │ # read data with spark engine, scan mode │ │ │ reader = NebulaReader(engine="spark") │ │ │ reader.scan(edge="follow", props="degree") │ └──│ df = reader.read() │ │ │ │ # run pagerank algorithm │ │ pr_result = df.algo.pagerank(reset_prob=0.15, max_iter=10) │ │ │ └─────────────────────────────────────────────────────────────┘
谢谢你读完本文 (///▽///)
欢迎前往 GitHub 来阅读 NebulaGraph 源码,或是尝试用它解决你的业务问题 yo~ GitHub 地址:
标签: #igraph使用教程 #arcengine融合算法 #pagerank可视化