龙空技术网

LeetCode 力扣官方题解 | 1447. 最简分数

力扣LeetCode 1004

前言:

现时兄弟们对“c语言class solution”大致比较关切,咱们都需要分析一些“c语言class solution”的相关文章。那么小编在网摘上汇集了一些关于“c语言class solution””的相关知识,希望兄弟们能喜欢,同学们快快来学习一下吧!

题目描述

给你一个整数 n,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n 的 最简 分数。分数可以以 任意 顺序返回。

示例 1:

输入:n = 2输出:["1/2"]解释:"1/2" 是唯一一个分母小于等于 2 的最简分数。

示例 2:

输入:n = 3输出:["1/2","1/3","2/3"]

示例 3:

输入:n = 4输出:["1/2","1/3","1/4","2/3","3/4"]解释:"2/4" 不是最简分数,因为它可以化简为 "1/2" 。

示例 4:

输入:n = 1输出:[]

提示:

1 <= n <= 100

解决方案方法一:数学思路

由于要保证分数在(0,1)范围内,我们可以枚举分母 denominator ∈ [2,n] 和分子 numerator ∈ [1,denominator],若分子分母的最大公约数为 1,则我们找到了一个最简分数。

代码

Python3

class Solution:    def simplifiedFractions(self, n: int) -> List[str]:        return [f"{numerator}/{denominator}" for denominator in range(2, n + 1) for numerator in range(1, denominator) if gcd(denominator, numerator) == 1]

C++

class Solution {public:    vector<string> simplifiedFractions(int n) {        vector<string> ans;        for (int denominator = 2; denominator <= n; ++denominator) {            for (int numerator = 1; numerator < denominator; ++numerator) {                if (__gcd(numerator, denominator) == 1) {                    ans.emplace_back(to_string(numerator) + "/" + to_string(denominator));                }            }        }        return ans;    }};

Java

class Solution {    public List<String> simplifiedFractions(int n) {        List<String> ans = new ArrayList<String>();        for (int denominator = 2; denominator <= n; ++denominator) {            for (int numerator = 1; numerator < denominator; ++numerator) {                if (gcd(numerator, denominator) == 1) {                    ans.add(numerator + "/" + denominator);                }            }        }        return ans;    }    public int gcd(int a, int b) {        return b != 0 ? gcd(b, a % b) : a;    }}

C#

public class Solution {    public IList<string> SimplifiedFractions(int n) {        IList<string> ans = new List<string>();        for (int denominator = 2; denominator <= n; ++denominator) {            for (int numerator = 1; numerator < denominator; ++numerator) {                if (GCD(numerator, denominator) == 1) {                    ans.Add(numerator + "/" + denominator);                }            }        }        return ans;    }    public int GCD(int a, int b) {        return b != 0 ? GCD(b, a % b) : a;    }}

Golang

func simplifiedFractions(n int) (ans []string) {    for denominator := 2; denominator <= n; denominator++ {        for numerator := 1; numerator < denominator; numerator++ {            if gcd(numerator, denominator) == 1 {                ans = append(ans, strconv.Itoa(numerator)+"/"+strconv.Itoa(denominator))            }        }    }    return}func gcd(a, b int) int {    for a != 0 {        a, b = b%a, a    }    return b}

C

#define MAX_FRACTION_LEN 10int gcd(int a, int b) {    if (b == 0) {        return a;    }    return gcd(b, a % b);}char ** simplifiedFractions(int n, int* returnSize) {    char ** ans = (char **)malloc(sizeof(char *) * n * (n - 1) / 2 );    int pos = 0;    for (int denominator = 2; denominator <= n; denominator++) {        for (int numerator = 1; numerator < denominator; numerator++) {            if (gcd(numerator, denominator) == 1) {                ans[pos] = (char *)malloc(sizeof(char) * MAX_FRACTION_LEN);                snprintf(ans[pos++], MAX_FRACTION_LEN, "%d%c%d", numerator, '/', denominator);            }        }    }    *returnSize = pos;    return ans;}

JavaScript

var simplifiedFractions = function(n) {    const ans = [];    for (let denominator = 2; denominator <= n; ++denominator) {        for (let numerator = 1; numerator < denominator; ++numerator) {            if (gcd(numerator, denominator) == 1) {                ans.push(numerator + "/" + denominator);            }        }    }    return ans;};const gcd = (a, b) => {    if (b === 0) {        return a;    }    return gcd(b, a % b);}

复杂度分析

时间复杂度: O(n2logn)。需要枚举 O(n2) 对分子分母的组合,每对分子分母计算最大公因数和生成字符串的复杂度均为 O(logn)。空间复杂度:O(1) 。除答案数组外,我们只需要常数个变量。

BY /

本文作者:力扣

声明:本文归“力扣”版权所有,如需转载请联系。

标签: #c语言class solution