前言:
现时兄弟们对“c语言class solution”大致比较关切,咱们都需要分析一些“c语言class solution”的相关文章。那么小编在网摘上汇集了一些关于“c语言class solution””的相关知识,希望兄弟们能喜欢,同学们快快来学习一下吧!题目描述
给你一个整数 n,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n 的 最简 分数。分数可以以 任意 顺序返回。
示例 1:
输入:n = 2输出:["1/2"]解释:"1/2" 是唯一一个分母小于等于 2 的最简分数。
示例 2:
输入:n = 3输出:["1/2","1/3","2/3"]
示例 3:
输入:n = 4输出:["1/2","1/3","1/4","2/3","3/4"]解释:"2/4" 不是最简分数,因为它可以化简为 "1/2" 。
示例 4:
输入:n = 1输出:[]
提示:
1 <= n <= 100
解决方案方法一:数学思路
由于要保证分数在(0,1)范围内,我们可以枚举分母 denominator ∈ [2,n] 和分子 numerator ∈ [1,denominator],若分子分母的最大公约数为 1,则我们找到了一个最简分数。
代码
Python3
class Solution: def simplifiedFractions(self, n: int) -> List[str]: return [f"{numerator}/{denominator}" for denominator in range(2, n + 1) for numerator in range(1, denominator) if gcd(denominator, numerator) == 1]
C++
class Solution {public: vector<string> simplifiedFractions(int n) { vector<string> ans; for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (__gcd(numerator, denominator) == 1) { ans.emplace_back(to_string(numerator) + "/" + to_string(denominator)); } } } return ans; }};
Java
class Solution { public List<String> simplifiedFractions(int n) { List<String> ans = new ArrayList<String>(); for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (gcd(numerator, denominator) == 1) { ans.add(numerator + "/" + denominator); } } } return ans; } public int gcd(int a, int b) { return b != 0 ? gcd(b, a % b) : a; }}
C#
public class Solution { public IList<string> SimplifiedFractions(int n) { IList<string> ans = new List<string>(); for (int denominator = 2; denominator <= n; ++denominator) { for (int numerator = 1; numerator < denominator; ++numerator) { if (GCD(numerator, denominator) == 1) { ans.Add(numerator + "/" + denominator); } } } return ans; } public int GCD(int a, int b) { return b != 0 ? GCD(b, a % b) : a; }}
Golang
func simplifiedFractions(n int) (ans []string) { for denominator := 2; denominator <= n; denominator++ { for numerator := 1; numerator < denominator; numerator++ { if gcd(numerator, denominator) == 1 { ans = append(ans, strconv.Itoa(numerator)+"/"+strconv.Itoa(denominator)) } } } return}func gcd(a, b int) int { for a != 0 { a, b = b%a, a } return b}
C
#define MAX_FRACTION_LEN 10int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b);}char ** simplifiedFractions(int n, int* returnSize) { char ** ans = (char **)malloc(sizeof(char *) * n * (n - 1) / 2 ); int pos = 0; for (int denominator = 2; denominator <= n; denominator++) { for (int numerator = 1; numerator < denominator; numerator++) { if (gcd(numerator, denominator) == 1) { ans[pos] = (char *)malloc(sizeof(char) * MAX_FRACTION_LEN); snprintf(ans[pos++], MAX_FRACTION_LEN, "%d%c%d", numerator, '/', denominator); } } } *returnSize = pos; return ans;}
JavaScript
var simplifiedFractions = function(n) { const ans = []; for (let denominator = 2; denominator <= n; ++denominator) { for (let numerator = 1; numerator < denominator; ++numerator) { if (gcd(numerator, denominator) == 1) { ans.push(numerator + "/" + denominator); } } } return ans;};const gcd = (a, b) => { if (b === 0) { return a; } return gcd(b, a % b);}
复杂度分析
时间复杂度: O(n2logn)。需要枚举 O(n2) 对分子分母的组合,每对分子分母计算最大公因数和生成字符串的复杂度均为 O(logn)。空间复杂度:O(1) 。除答案数组外,我们只需要常数个变量。
BY /
本文作者:力扣
声明:本文归“力扣”版权所有,如需转载请联系。
标签: #c语言class solution