前言:
此时大家对“求组合数的代码”都比较注意,姐妹们都需要了解一些“求组合数的代码”的相关文章。那么小编也在网摘上网罗了一些有关“求组合数的代码””的相关资讯,希望姐妹们能喜欢,你们一起来了解一下吧!我将算法学习相关的资料已经整理到了Github :,里面还有leetcode刷题攻略、各个类型经典题目刷题顺序、思维导图看一看一定会有所收获,如果给你有帮助给一个star支持一下吧!
第216题.组合总和III
链接:
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
所有数字都是正整数。解集不能包含重复的组合。
示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
思路
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
相对于回溯算法:求组合问题!,无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。
想到这一点了,做过77. 组合之后,本题是简单一些了。
本题k相当于了树的深度,9(因为整个集合就是9个数)就是树的宽度。
例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。
选取过程如图:
图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。
回溯三部曲「确定递归函数参数」
和回溯算法:求组合问题!一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
vector<vector<int>> result; // 存放结果集 vector<int> path; // 符合条件的结果
接下来还需要如下参数:
targetSum(int)目标和,也就是题目中的n。k(int)就是题目中要求k个数的集合。sum(int)为已经收集的元素的总和,也就是path里元素的总和。startIndex(int)为下一层for循环搜索的起始位置。
所以代码如下:
vector<vector<int>> result;vector<int> path;void backtracking(int targetSum, int k, int sum, int startIndex)
其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
确定终止条件
什么时候终止呢?
在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size() 和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:
if (path.size() == k) { if (sum == targetSum) result.push_back(path); return; // 如果path.size() == k 但sum != targetSum 直接返回}「单层搜索过程」
本题和回溯算法:求组合问题!区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9
如图:
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
代码如下:
for (int i = startIndex; i <= 9; i++) { sum += i; path.push_back(i); backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex sum -= i; // 回溯 path.pop_back(); // 回溯 }
「别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!」
参照关于回溯算法,你该了解这些!中的模板,不难写出如下C++代码:
class Solution {private: vector<vector<int>> result; // 存放结果集 vector<int> path; // 符合条件的结果 // targetSum:目标和,也就是题目中的n。 // k:题目中要求k个数的集合。 // sum:已经收集的元素的总和,也就是path里元素的总和。 // startIndex:下一层for循环搜索的起始位置。 void backtracking(int targetSum, int k, int sum, int startIndex) { if (path.size() == k) { if (sum == targetSum) result.push_back(path); return; // 如果path.size() == k 但sum != targetSum 直接返回 } for (int i = startIndex; i <= 9; i++) { sum += i; // 处理 path.push_back(i); // 处理 backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex sum -= i; // 回溯 path.pop_back(); // 回溯 } }public: vector<vector<int>> combinationSum3(int k, int n) { result.clear(); // 可以不加 path.clear(); // 可以不加 backtracking(n, k, 0, 1); return result; }};剪枝
这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。
如图:
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
那么剪枝的地方一定是在递归终止的地方剪,剪枝代码如下:
if (sum > targetSum) { // 剪枝操作 return;}
最后C++代码如下:
class Solution {private: vector<vector<int>> result; // 存放结果集 vector<int> path; // 符合条件的结果 // targetSum:目标和,也就是题目中的n。 // k:题目中要求k个数的集合。 // sum:已经收集的元素的总和,也就是path里元素的总和。 // startIndex:下一层for循环搜索的起始位置。 void backtracking(int targetSum, int k, int sum, int startIndex) { if (sum > targetSum) { // 剪枝操作 return; // 如果path.size() == k 但sum != targetSum 直接返回 } if (path.size() == k) { if (sum == targetSum) result.push_back(path); return; } for (int i = startIndex; i <= 9; i++) { sum += i; // 处理 path.push_back(i); // 处理 backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex sum -= i; // 回溯 path.pop_back(); // 回溯 } }public: vector<vector<int>> combinationSum3(int k, int n) { result.clear(); // 可以不加 path.clear(); // 可以不加 backtracking(n, k, 0, 1); return result; }};总结
开篇就介绍了本题与回溯算法:求组合问题!的区别,相对来说加了元素总和的限制,如果做完回溯算法:求组合问题!再做本题再合适不过。
分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。
相信做完本题,大家对组合问题应该有初步了解了。
「就酱,如果感觉对你有帮助,就帮Carl转发一下吧,让更多小伙伴知道这里!」
我是程序员Carl,个人主页:
这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!
@代码随想录 期待你的关注
标签: #求组合数的代码 #求组合数的代码是多少