龙空技术网

2023-08-28:用go语言编写。给你一个正整数数组nums, 同时给你一

福大大架构师每日一题 131

前言:

现在小伙伴们对“int数组的长度”大体比较珍视,你们都想要知道一些“int数组的长度”的相关内容。那么小编同时在网络上网罗了一些有关“int数组的长度””的相关知识,希望看官们能喜欢,看官们一起来学习一下吧!

2023-08-28:用go语言编写。给你一个正整数数组nums, 同时给你一个长度为 m 的整数数组 queries。

第 i 个查询中,你需要将 nums 中所有元素变成 queries[i] 。你可以执行以下操作 任意 次:

将数组里一个元素 增大 或者 减小 1 。请你返回一个长度为 m 的数组 answer ,

其中 answer[i]是将 nums 中所有元素变成 queries[i] 的 最少 操作次数。

注意,每次查询后,数组变回最开始的值。

输入:nums = [3,1,6,8], queries = [1,5]。

输出:[14,10]。

来自左程云

答案2023-08-28:

大体过程如下:

1.定义 minOperations 函数,用于计算将 nums 中的元素转换为 queries 中每个元素所需的最少操作次数。函数接受两个参数:nums(正整数数组)和 queries(整数数组)。

2.获取 nums 数组的长度,对 nums 进行排序,并创建一个长度为 n+1sum 数组,用于保存从 nums 累加得到的前缀和。

3.创建一个空的 ans 数组,用于存储结果。

4.遍历 queries 中的每个元素 v

5.在 bs 函数中,使用二分查找找到 nums 中小于 v 的最右位置,并将结果赋给 less

6.计算当前查询对应的最少操作次数 curAns:

• 初始化变量 curAns(less+1)*v - sum0(sum, 0, less),表示将小于 v 的元素增加到 v 的操作次数。• 在 bs 函数中,使用二分查找找到 nums 中大于等于 v+1 的最左位置,并将结果赋给 more• 将 curAns 更新为 curAns + sum0(sum, more+1, n-1) - (n-more-1)*v,表示将大于 v 的元素减小到 v 的操作次数。

7.将 curAns 添加到 ans 数组中。

8.返回得到的 ans 数组作为结果。

9.在 main 函数中,定义给定的 numsqueries

10.调用 minOperations 函数,并将结果赋给 result

11.打印结果 result

总体的时间复杂度是 O(m*log(n)),其中 m 是 queries 的长度,n 是 nums 的长度。这是因为对于每个查询,都需要使用二分查找来找到相应的位置。

总体的空间复杂度是 O(n),其中 n 是 nums 的长度。这是因为需要创建额外的数组 sum 来保存前缀和。

go完整代码如下:

package mainimport (    "fmt"    "sort")func minOperations(nums []int, queries []int) []int {    n := len(nums)    sort.Ints(nums)    sum := make([]int, n+1)    for i := 0; i < n; i++ {        sum[i+1] = sum[i] + int(nums[i])    }    ans := make([]int, 0)    var less, more, curAns int    for _, v := range queries {        less = bs(nums, v)        curAns = (less+1)*int(v) - sum0(sum, 0, int(less))        more = bs(nums, v+1)        curAns += sum0(sum, more+1, n-1) - int(n-more-1)*int(v)        ans = append(ans, curAns)    }    return ans}// 查找 <v 最右的位置// 没有返回-1func bs(nums []int, v int) int {    l := 0    r := len(nums) - 1    var m, ans int = -1, -1    for l <= r {        m = int((l + r) / 2)        if nums[m] < v {            ans = m            l = int(m + 1)        } else {            r = int(m - 1)        }    }    return ans}func sum0(sum []int, l, r int) int {    if l > r {        return 0    }    return sum[r+1] - sum[l]}func main() {    nums := []int{3, 1, 6, 8}    queries := []int{1, 5}    result := minOperations(nums, queries)    fmt.Println(result)}

在这里插入图片描述

rust完整代码如下:

fn min_operations(nums: Vec<i32>, queries: Vec<i32>) -> Vec<i64> {    let mut nums = nums.clone();    nums.sort();    let n = nums.len() as i32;    let mut sum = vec![0; n as usize + 1];    for i in 0..n {        sum[i as usize + 1] = sum[i as usize] + nums[i as usize] as i64;    }    let mut ans = Vec::new();    for v in queries {        let less = bs(&nums, v);        let mut cur_ans = (less + 1) as i64 * v as i64 - sum0(&sum, 0, less);        let more = bs(&nums, v + 1);        cur_ans += sum0(&sum, more + 1, n - 1) - (n - more - 1) as i64 * v as i64;        ans.push(cur_ans);    }    ans}fn bs(nums: &Vec<i32>, v: i32) -> i32 {    let mut l = 0;    let mut r = nums.len() as i32 - 1;    let mut ans = -1;    while l <= r {        let m = (l + r) / 2;        if nums[m as usize] < v {            ans = m;            l = m + 1;        } else {            r = m - 1;        }    }    ans}fn sum0(sum: &Vec<i64>, l: i32, r: i32) -> i64 {    if l > r {        0    } else {        sum[r as usize + 1] - sum[l as usize]    }}fn main() {    let nums = vec![3, 1, 6, 8];    let queries = vec![1, 5];    let result = min_operations(nums, queries);    println!("{:?}", result);}

在这里插入图片描述

c++完整代码如下:

#include <iostream>#include <vector>#include <algorithm>using namespace std;int bs(vector<int>& nums, int v) {    int l = 0;    int r = nums.size() - 1;    int m, ans = -1;    while (l <= r) {        m = (l + r) / 2;        if (nums[m] < v) {            ans = m;            l = m + 1;        }        else {            r = m - 1;        }    }    return ans;}long long sum0(vector<long long>& sum, int l, int r) {    return l > r ? 0 : (sum[r + 1] - sum[l]);}vector<long long> minOperations(vector<int>& nums, vector<int>& queries) {    int n = nums.size();    sort(nums.begin(), nums.end());    vector<long long> sum(n + 1, 0);    for (int i = 0; i < n; i++) {        sum[i + 1] = sum[i] + nums[i];    }    vector<long long> ans;    int less, more;    long long curAns;    for (int v : queries) {        less = bs(nums, v);        curAns = (long long)(less + 1) * v - sum0(sum, 0, less);        more = bs(nums, v + 1);        curAns += sum0(sum, more + 1, n - 1) - (long long)(n - more - 1) * v;        ans.push_back(curAns);    }    return ans;}int main() {    vector<int> nums = { 3, 1, 6, 8 };    vector<int> queries = { 1, 5 };    vector<long long> result = minOperations(nums, queries);    for (long long ans : result) {        cout << ans << " ";    }    cout << endl;    return 0;}

在这里插入图片描述

c完整代码如下:

#include <stdio.h>#include <stdlib.h>int binarySearch(int* nums, int numsSize, int v) {    int l = 0;    int r = numsSize - 1;    int m, ans = -1;    while (l <= r) {        m = (l + r) / 2;        if (nums[m] < v) {            ans = m;            l = m + 1;        }        else {            r = m - 1;        }    }    return ans;}long long sum(long long* sumArray, int l, int r) {    return l > r ? 0 : (sumArray[r + 1] - sumArray[l]);}int cmpfunc(const void* a, const void* b) {    return (*(int*)a - *(int*)b);}long long* minOperations(int* nums, int numsSize, int* queries, int queriesSize, int* returnSize) {    int n = numsSize;    qsort(nums, n, sizeof(int), cmpfunc);    long long* sumArray = (long long*)malloc((n + 1) * sizeof(long long));    sumArray[0] = 0;    for (int i = 0; i < n; i++) {        sumArray[i + 1] = sumArray[i] + nums[i];    }    long long* ans = (long long*)malloc(queriesSize * sizeof(long long));    int less, more;    long long curAns;    for (int i = 0; i < queriesSize; i++) {        int v = queries[i];        less = binarySearch(nums, n, v);        curAns = (long long)(less + 1) * v - sum(sumArray, 0, less);        more = binarySearch(nums, n, v + 1);        curAns += sum(sumArray, more + 1, n - 1) - (long long)(n - more - 1) * v;        ans[i] = curAns;    }    *returnSize = queriesSize;    return ans;}int main() {    int nums[] = { 3, 1, 6, 8 };    int queries[] = { 1, 5 };    int numsSize = sizeof(nums) / sizeof(nums[0]);    int queriesSize = sizeof(queries) / sizeof(queries[0]);    int returnSize;    long long* result = minOperations(nums, numsSize, queries, queriesSize, &returnSize);    printf("Result: ");    for (int i = 0; i < returnSize; i++) {        printf("%lld ", result[i]);    }    printf("\n");    free(result);    return 0;}

在这里插入图片描述

标签: #int数组的长度