龙空技术网

Bellman-Ford算法与SPFA算法详解

海椰人 128

前言:

现在各位老铁们对“spfa算法代码”大致比较着重,朋友们都需要学习一些“spfa算法代码”的相关资讯。那么小编在网摘上搜集了一些关于“spfa算法代码””的相关文章,希望我们能喜欢,朋友们快快来了解一下吧!

Bellman-Ford算法

其实,和Floyd算法类似,Bellman-Ford算法同样是基于DP思想的,而且也是在不断的进行松弛操作(可以理解为「不断放宽对结果的要求」,比如在Floyd中就体现为不断第一维kk,具体解释在这里)

既然是单源最短路径问题,我们就不再需要在DP状态中指定起始点。于是,我们可以设计出这样的DP状态(和Floyd很类似):

dp[k][u]表示从s(起点)到u,最多经过k条边时的最短路径dp[k][u]表示从s(起点)到u,最多经过k条边时的最短路径

显然,初始值为:

对于起点s,dp[0][s]=0;对于其他任意节点u,dp[0][u]=+∞对于起点s,dp[0][s]=0;对于其他任意节点u,dp[0][u]=+∞

我们可以先考虑,如何从dp[0][u]dp[0][u]转移出dp[1][u]dp[1][u](就是多一条边)。

于是很容易想到这个最显而易见又最暴力的方法:枚举每一条边(u,v)(u,v),并更新dp[1][v]=min(dp[1][v],dp[0][u]+w[u][v])(其中w[u][v]表示这条边的边权)dp[1][v]=min(dp[1][v],dp[0][u]+w[u][v])(其中w[u][v]表示这条边的边权)

推广到任意dp[k−1][u]dp[k−1][u]到dp[k][u]dp[k][u]的转移,我们仍然可以使用这样的方法。

下面是代码实现:

struct Edge {	int u, v; // 边的两个端点	int w; // 边的权值};int n; // 点数int m; // 边数Edge e[MAXM]; // 所有的边int dp[MAXN][MAXN]; // 解释见上方void bellman_ford(int start) {	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[0][start] = 0;	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)		for(int j = 1; j <= n; j++) { // 先复制一遍			dp[i][j] = dp[i - 1][j];		}		for(int j = 1; j <= m; j++) { // 枚举每一条边			dp[i][e[j].v] = min(dp[i][e[j].v], dp[i - 1][e[j].u] + e[j].w);		}	}}

显然,时间复杂度为O(nm)O(nm),空间复杂度也是O(nm)O(nm),代码复杂度为O(1)

我们可以先考虑优化空间复杂度(压缩掉第一维kk),于是,DP状态变为:

dp[u]表示从s(起点)到u的最短路径dp[u]表示从s(起点)到u的最短路径

转移方程为:

dp[v]=min(dp[v],dp[u]+w[v])dp[v]=min(dp[v],dp[u]+w[v])

关于状态压缩后的正确性:最有可能令人不理解的部分就是:在同一轮更新中,我们可能会用已经更新完的值再去更新别的值。这就导致,同一论更新中,不同节点被更新到的DP值对应的kk可能不同。(如果没看懂,就看下面这张图)

但是实际上,我们其实并不关心到底走了几步,而只关心最短路的边权和。所以,像这样的“错位更新”并不会引起错误。

于是,我们可以得到新的代码:

struct Edge {	int u, v; // 边的两个端点	int w; // 边的权值};int n; // 点数int m; // 边数Edge e[MAXM]; // 所有的边int dp[MAXN]; // 解释见上方void bellman_ford(int start) {	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[start] = 0;	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)		for(int j = 1; j <= m; j++) { // 枚举每一条边			dp[e[j].v] = min(dp[e[j].v], dp[e[j].u] + e[j].w);		}	}}

我们可以继续考虑优化时间复杂度。显然,如果在某一轮的更新后,发现并没有任何一个值被更新,那么就意味着:这张图已经不能再被更新了(已经求出ss到每个点的最短路),那就可以直接break了。

所以,优化后的代码如下:

Bellman-Ford算法模板

struct Edge {	int v; // 边指向的节点	int w; // 边的权值};int n; // 点数int m; // 边数vector<Edge> g[MAXN]; // 保存从每个节点发出的边int dp[MAXN]; // 解释见上方void bellman_ford(int start) {	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[start] = 0;	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)		bool updated = 0; // 记录是否有节点被更新		for(int i = 1; i <= n; i++) { // 枚举每一个节点			if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点				continue;			}			for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边				if(dp[i] + e.w < dp[e.v]) {					dp[e.v] = dp[i] + e.w;					updated = 1; // 标记有值被更新				}			}		}		if(!updated) {			break; // 没有节点被更新,直接退出		}	}}

这就是最常见的Bellman-Ford朴素算法了。

同时,也可以看到,本次优化后的代码中将「直接储存所有边」的方式改为了使用「邻接表」。这是因为邻接表在图论算法中更加常用,也使得Bellman-Ford算法可以更容易地和其他算法配合使用。

SPFA算法

SPFA算法(Shortest Path Faster Algorithm),顾名思义就是一种让Bellman-Ford跑得更快的方法。

在上一部分的最后,我们对于没有更新的情况,直接break掉,来优化时间。但是,稍加思考就会发现:有的时候,我们会为了唯一几个被更新过的节点,而再把所有的节点遍历一遍,那么这样就会产生时间的浪费。所以,SPFA本质上就是使用队列来解决这样的问题。

下面是SPFA算法的基本步骤:

我们先设置好初始值(和Bellman-Ford一样),再将起点(ss)加入队列中。每次从队列中取出一个节点,尝试用它去更新与它相连的节点;如果某个节点的最短距离被更新了,那么将这个节点加入队列。回到步骤2

于是,很容易写出对应的代码:

SPFA算法模板

struct Edge {	int v; // 边指向的节点	int w; // 边的权值};int n; // 点数int m; // 边数vector<Edge> g[MAXN]; // 保存从每个节点发出的边int dp[MAXN]; // 定义没有变queue<int> q; // 储存点用的队列bool vis[MAXN]; // 记录每个节点当前是否在队列中void spfa(int start) {	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[start] = 0;	q.push(start);	vis[start] = 1; // 标记一下	while(!q.empty()) {		int x = q.front(); // 取出一个节点		q.pop();		vis[x] = 0; // 清除标记,因为下次还有可能入队		for(Edge &e : g[x]) { // 枚举从这个节点发出的每一条边			if(dp[x] + e.w < dp[e.v]) {				dp[e.v] = dp[x] + e.w;				if(!vis[e.v]) { // 如果这个节点现在不在队列中					q.push(e.v); // 那就把它加入队列					vis[e.v] = 1; // 标记一下				}			}		}	}}

一道测试用的例题:P4779 【模板】单源最短路径(标准版)

Bellman-Ford & SPFA判断负环

负环,就是边权和为负数的环。负环是最短路算法中一个很重要的问题,因为只要进入一个负环,最短距离就会无限减小。当然,这肯定不是我们希望的,所以接下来就要介绍如何使用Bellman-Ford算法或SPFA算法来判断一张图中是否包含负环。

显然,一张有向图上的任意一条简单路径最多只包含n−1n−1条边(否则不可能是 简单 的)。而且,当图中没有负环时,两点间的最短路径一定是简单路径。所以,如果发现从起点到某个节点uu的最短路径包含多于n−1n−1条边,那么这条路径上一定包含负环。

所以,我们只需要在算法中添加一些简单的判断就可以实现判负环了。

具体方法:

对于普通的Bellman_ford算法,我们可以在完成DP后,在进行一遍更新,如果存在任意节点与起点之间的最短路径是可以被更新的,那么可以确定图中一定存在负环对于SPFA算法,我们可以在更新最短路径的同时,记录每条最短路径上的边数,如果发现某条最短路径的边数大于n−1n−1,那么可以确定图中一定存在负环

于是,我们可以写出分别使用这两种算法来判负环的代码:

Bellman-Ford判负环模板

struct Edge {	int v; // 边指向的节点	int w; // 边的权值};int n; // 点数int m; // 边数vector<Edge> g[MAXN]; // 保存从每个节点发出的边int dp[MAXN];bool bellman_ford_check_ncycle(int start) {	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[start] = 0;	for(int i = 1; i < n; i++) { // 一张图中的最长路径最多只包含n - 1边,所以更新n - 1遍就够了(因为点不能重复)		bool updated = 0; // 记录是否有节点被更新		for(int i = 1; i <= n; i++) { // 枚举每一个节点			if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点				continue;			}			for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边				if(dp[i] + e.w < dp[e.v]) {					dp[e.v] = dp[i] + e.w;					updated = 1; // 标记有值被更新				}			}		}		if(!updated) {			return 0; // 没有节点被更新,一定没有负环		}	}	for(int i = 1; i <= n; i++) { // 枚举每一个节点		if(dp[i] == 0x3f3f3f3f) { // 无法到达的节点			continue;		}		for(Edge &e : g[i]) { // 枚举从这个节点发出的每一条边			if(dp[i] + e.w < dp[e.v]) {				return 1; // 还能被更新说明有负环			}		}	}	return 0;}
SPFA判负环模板
struct Edge {	int v; // 边指向的节点	int w; // 边的权值};int n; // 点数int m; // 边数vector<Edge> g[MAXN]; // 保存从每个节点发出的边int dp[MAXN]; // dp的定义没有变int cnt[MAXN]; // 记录从起点到节点u的最短路径中的边数queue<int> q; // 储存点用的队列bool vis[MAXN]; // 记录每个节点当前是否在队列中bool spfa_check_ncycle(int start) { // SPFA判负环	memset(dp, 0x3f, sizeof(dp)); // 初始化为INF	dp[start] = 0;	q.push(start);	vis[start] = 1; // 标记一下	while(!q.empty()) {		int x = q.front(); // 取出一个节点		q.pop();		vis[x] = 0; // 清除标记,因为下次还有可能入队		for(Edge &e : g[x]) { // 枚举从这个节点发出的每一条边			if(dp[x] + e.w < dp[e.v]) {				dp[e.v] = dp[x] + e.w;				cnt[e.v] = cnt[e.v] + 1; // 多了当前这条边				if(cnt[e.v] >= n) { // 从起点到v的最短路径上有多于n - 1条边					return 1; // 一定出现了负环				}				if(!vis[e.v]) { // 如果这个节点现在不在队列中					q.push(e.v); // 那就把它加入队列					vis[e.v] = 1; // 标记一下				}			}		}	}	return 0; // 没有负环}

文章来自

标签: #spfa算法代码 #bellman ford时间复杂度 #bellman ford算法复杂度 #spfa算法视频 #spfa算法判负环