前言:
现时大家对“dbscan算法伪代码”大约比较讲究,同学们都想要知道一些“dbscan算法伪代码”的相关资讯。那么小编在网上汇集了一些对于“dbscan算法伪代码””的相关内容,希望姐妹们能喜欢,大家快快来学习一下吧!最近很火的chatgpt,使用体验了一段时间,在程序开发过程中很是开阔思路,例如想写一个算法,不知道怎么写,那就让chatgpt来写,比如说我想写一个dbscan算法,它给我生成了以下的代码,代码具有良好的风格,并且能够初步在工程中使用,极大的节约了开发的时间。有想一起交流怎样使用的可以联系我共同交流。
#include <iostream>#include <vector>#include <cmath>struct Point { std::vector<double> values;};class DBSCAN {public: DBSCAN(double eps, int minPts) : eps_(eps), minPts_(minPts) {} void cluster(const std::vector<Point>& data, std::vector<int>& labels) { const int n = data.size(); std::vector<bool> visited(n, false); std::vector<int> noise; int cluster_id = 0; for (int i = 0; i < n; ++i) { if (visited[i]) continue; visited[i] = true; std::vector<int> neighbors = rangeQuery(data, i); if (neighbors.size() < minPts_) { noise.push_back(i); continue; } expandCluster(data, i, neighbors, visited, cluster_id, labels); ++cluster_id; } for (int i : noise) { labels[i] = -1; // 标记为噪声点 } }private: std::vector<int> rangeQuery(const std::vector<Point>& data, int q_idx) const { std::vector<int> neighbors; for (int i = 0; i < data.size(); ++i) { if (i == q_idx) continue; double dist = euclideanDistance(data[q_idx], data[i]); if (dist <= eps_) { neighbors.push_back(i); } } return neighbors; } void expandCluster(const std::vector<Point>& data, int p_idx, std::vector<int>& neighbors, std::vector<bool>& visited, int cluster_id, std::vector<int>& labels) { labels[p_idx] = cluster_id; while (!neighbors.empty()) { int q_idx = neighbors.front(); neighbors.erase(neighbors.begin()); if (!visited[q_idx]) { visited[q_idx] = true; std::vector<int> q_neighbors = rangeQuery(data, q_idx); if (q_neighbors.size() >= minPts_) { neighbors.insert(neighbors.end(), q_neighbors.begin(), q_neighbors.end()); } } if (labels[q_idx] == -1) { labels[q_idx] = cluster_id; } } } double euclideanDistance(const Point& a, const Point& b) const { double dist = 0.0; for (int i = 0; i < a.values.size(); ++i) { dist += std::pow(a.values[i] - b.values[i], 2); } return std::sqrt(dist); } double eps_; int minPts_;};
版权声明:
本站文章均来自互联网搜集,如有侵犯您的权益,请联系我们删除,谢谢。
标签: #dbscan算法伪代码