龙空技术网

dbscan算法(chatgpt生成)

刘杨 108

前言:

现时大家对“dbscan算法伪代码”大约比较讲究,同学们都想要知道一些“dbscan算法伪代码”的相关资讯。那么小编在网上汇集了一些对于“dbscan算法伪代码””的相关内容,希望姐妹们能喜欢,大家快快来学习一下吧!

最近很火的chatgpt,使用体验了一段时间,在程序开发过程中很是开阔思路,例如想写一个算法,不知道怎么写,那就让chatgpt来写,比如说我想写一个dbscan算法,它给我生成了以下的代码,代码具有良好的风格,并且能够初步在工程中使用,极大的节约了开发的时间。有想一起交流怎样使用的可以联系我共同交流。

#include <iostream>#include <vector>#include <cmath>struct Point {    std::vector<double> values;};class DBSCAN {public:    DBSCAN(double eps, int minPts) : eps_(eps), minPts_(minPts) {}    void cluster(const std::vector<Point>& data, std::vector<int>& labels) {        const int n = data.size();        std::vector<bool> visited(n, false);        std::vector<int> noise;        int cluster_id = 0;        for (int i = 0; i < n; ++i) {            if (visited[i]) continue;            visited[i] = true;            std::vector<int> neighbors = rangeQuery(data, i);            if (neighbors.size() < minPts_) {                noise.push_back(i);                continue;            }            expandCluster(data, i, neighbors, visited, cluster_id, labels);            ++cluster_id;        }        for (int i : noise) {            labels[i] = -1;  // 标记为噪声点        }    }private:    std::vector<int> rangeQuery(const std::vector<Point>& data, int q_idx) const {        std::vector<int> neighbors;        for (int i = 0; i < data.size(); ++i) {            if (i == q_idx) continue;            double dist = euclideanDistance(data[q_idx], data[i]);            if (dist <= eps_) {                neighbors.push_back(i);            }        }        return neighbors;    }    void expandCluster(const std::vector<Point>& data, int p_idx, std::vector<int>& neighbors,                       std::vector<bool>& visited, int cluster_id, std::vector<int>& labels) {        labels[p_idx] = cluster_id;        while (!neighbors.empty()) {            int q_idx = neighbors.front();            neighbors.erase(neighbors.begin());            if (!visited[q_idx]) {                visited[q_idx] = true;                std::vector<int> q_neighbors = rangeQuery(data, q_idx);                if (q_neighbors.size() >= minPts_) {                    neighbors.insert(neighbors.end(), q_neighbors.begin(), q_neighbors.end());                }            }            if (labels[q_idx] == -1) {                labels[q_idx] = cluster_id;            }        }    }    double euclideanDistance(const Point& a, const Point& b) const {        double dist = 0.0;        for (int i = 0; i < a.values.size(); ++i) {            dist += std::pow(a.values[i] - b.values[i], 2);        }        return std::sqrt(dist);    }    double eps_;    int minPts_;};

标签: #dbscan算法伪代码