龙空技术网

Java性能调优的7个实用技巧分享

易善知 47

前言:

现时各位老铁们对“java性能调优”大致比较关切,大家都想要剖析一些“java性能调优”的相关资讯。那么小编在网摘上收集了一些关于“java性能调优””的相关资讯,希望咱们能喜欢,咱们一起来学习一下吧!

随着应用的数据量不断的增加,系统的反应一般会越来越慢,这个时候我们就需要性能调优。性能调优的步骤如下:

Java 应用性能优化是一个老生常谈的话题,典型的性能问题如页面响应慢、接口超时,服务器负载高、并发数低,数据库频繁死锁等。尤其是在“糙快猛”的互联网开发模式大行其道的今天,随着系统访问量的日益增加和代码的臃肿,各种性能问题开始纷至沓来。

Java 应用性能的瓶颈点非常多,比如磁盘、内存、网络 I/O 等系统因素,Java 应用代码,JVM GC,数据库,缓存等。笔者根据个人经验,将 Java 性能优化分为 4 个层级:应用层、数据库层、框架层、JVM 层,如图 1 所示。

图 1.Java 性能优化分层模型

每层优化难度逐级增加,涉及的知识和解决的问题也会不同。比如应用层需要理解代码逻辑,通过 Java 线程栈定位有问题代码行等;数据库层面需要分析 SQL、定位死锁等;框架层需要懂源代码,理解框架机制;JVM 层需要对 GC 的类型和工作机制有深入了解,对各种 JVM 参数作用了然于胸。

围绕 Java 性能优化,有两种最基本的分析方法:现场分析法和事后分析法。

现场分析法通过保留现场,再采用诊断工具分析定位。现场分析对线上影响较大,部分场景(特别是涉及到用户关键的在线业务时)不太合适。

事后分析法需要尽可能多收集现场数据,然后立即恢复服务,同时针对收集的现场数据进行事后分析和复现。下面我们从性能诊断工具出发,分享一些案例与实践。

一、性能诊断工具

性能诊断一种是针对已经确定有性能问题的系统和代码进行诊断,还有一种是对预上线系统提前性能测试,确定性能是否符合上线要求。

本文主要针对前者,后者可以用各种性能压测工具(例如 JMeter)进行测试,不在本文讨论范围内。

针对 Java 应用,性能诊断工具主要分为两层:OS 层面和 Java 应用层面(包括应用代码诊断和 GC 诊断)。

OS 诊断

OS 的诊断主要关注的是 CPU、Memory、I/O 三个方面。

二、 CPU 诊断

对于 CPU 主要关注平均负载(Load Average),CPU 使用率,上下文切换次数(Context Switch)。

通过 top 命令可以查看系统平均负载和 CPU 使用率,图 2 为通过 top 命令查看某系统的状态。

图 2.top 命令示例

平均负载有三个数字:63.66,58.39,57.18,分别表示过去 1 分钟、5 分钟、15 分钟机器的负载。按照经验,若数值小于 0.7*CPU 个数,则系统工作正常;若超过这个值,甚至达到 CPU 核数的四五倍,则系统的负载就明显偏高。

图 2 中 15 分钟负载已经高达 57.18,1 分钟负载是 63.66(系统为 16 核),说明系统出现负载问题,且存在进一步升高趋势,需要定位具体原因了。

通过 vmstat 命令可以查看 CPU 的上下文切换次数,如图 3 所示:

图 3.vmstat 命令示例

上下文切换次数发生的场景主要有如下几种:

1)时间片用完,CPU 正常调度下一个任务;

2)被其它优先级更高的任务抢占;

3)执行任务碰到 I/O 阻塞,挂起当前任务,切换到下一个任务;

4)用户代码主动挂起当前任务让出 CPU;

5)多任务抢占资源,由于没有抢到被挂起;

6)硬件中断。

Java 线程上下文切换主要来自共享资源的竞争。一般单个对象加锁很少成为系统瓶颈,除非锁粒度过大。但在一个访问频度高,对多个对象连续加锁的代码块中就可能出现大量上下文切换,成为系统瓶颈。

三、 Memory

从操作系统角度,内存关注应用进程是否足够,可以使用 free –m 命令查看内存的使用情况。

通过 top 命令可以查看进程使用的虚拟内存 VIRT 和物理内存 RES,根据公式 VIRT = SWAP + RES 可以推算出具体应用使用的交换分区(Swap)情况,使用交换分区过大会影响 Java 应用性能,可以将 swappiness 值调到尽可能小。

因为对于 Java 应用来说,占用太多交换分区可能会影响性能,毕竟磁盘性能比内存慢太多

四、 I/O

I/O 包括磁盘 I/O 和网络 I/O,一般情况下磁盘更容易出现 I/O 瓶颈。通过 iostat 可以查看磁盘的读写情况,通过 CPU 的 I/O wait 可以看出磁盘 I/O 是否正常。

如果磁盘 I/O 一直处于很高的状态,说明磁盘太慢或故障,成为了性能瓶颈,需要进行应用优化或者磁盘更换。

除了常用的 top、 ps、vmstat、iostat 等命令,还有其他 Linux 工具可以诊断系统问题,如 mpstat、tcpdump、netstat、pidstat、sar 等。Brendan 总结列出了 Linux 不同设备类型的性能诊断工具,如图 4 所示,可供参考。

图 4.Linux 性能观测工具

五、 Java 应用诊断及工具

应用代码性能问题是相对好解决的一类性能问题。通过一些应用层面监控报警,如果确定有问题的功能和代码,直接通过代码就可以定位;或者通过 top+jstack,找出有问题的线程栈,定位到问题线程的代码上,也可以发现问题。对于更复杂,逻辑更多的代码段,通过 Stopwatch 打印性能日志往往也可以定位大多数应用代码性能问题。

常用的 Java 应用诊断包括线程、堆栈、GC 等方面的诊断。

jstack

jstack 命令通常配合 top 使用,通过 top -H -p pid 定位 Java 进程和线程,再利用 jstack -l pid 导出线程栈。由于线程栈是瞬态的,因此需要多次 dump,一般 3 次 dump,一般每次隔 5s 就行。将 top 定位的 Java 线程 pid 转成 16 进制,得到 Java 线程栈中的 nid,可以找到对应的问题线程栈。

图 5. 通过 top –H -p 查看运行时间较长 Java 线程

如图 5 所示,其中的线程 24985 运行时间较长,可能存在问题,转成 16 进制后,通过 Java 线程栈找到对应线程 0x6199 的栈如下,从而定位问题点,如图 6 所示。

图 6.jstack 查看线程堆栈

JProfiler

JProfiler 可对 CPU、堆、内存进行分析,功能强大,如图 7 所示。同时结合压测工具,可以对代码耗时采样统计。

图 7. 通过 JProfiler 进行内存分析

六、 GC 诊断

Java GC 解决了程序员管理内存的风险,但 GC 引起的应用暂停成了另一个需要解决的问题。JDK 提供了一系列工具来定位 GC 问题,比较常用的有 jstat、jmap,还有第三方工具 MAT 等。

jstat

jstat 命令可打印 GC 详细信息,Young GC 和 Full GC 次数,堆信息等。其命令格式为

jstat –gcxxx -t pid <interval> <count>,如图 8 所示。

图 8.jstat 命令示例

jmap

jmap 打印 Java 进程堆信息 jmap –heap pid。通过 jmap –dump:file=xxx pid 可 dump 堆到文件,然后通过其它工具进一步分析其堆使用情况

MAT

MAT 是 Java 堆的分析利器,提供了直观的诊断报告,内置的 OQL 允许对堆进行类 SQL 查询,功能强大,outgoing reference 和 incoming reference 可以对对象引用追根溯源。

图 9.MAT 示例

图 9 是 MAT 使用示例,MAT 有两列显示对象大小,分别是 Shallow size 和 Retained size,前者表示对象本身占用内存的大小,不包含其引用的对象,后者是对象自己及其直接或间接引用的对象的 Shallow size 之和,即该对象被回收后 GC 释放的内存大小,一般说来关注后者大小即可。

对于有些大堆 (几十 G) 的 Java 应用,需要较大内存才能打开 MAT。

通常本地开发机内存过小,是无法打开的,建议在线下服务器端安装图形环境和 MAT,远程打开查看。或者执行 mat 命令生成堆索引,拷贝索引到本地,不过这种方式看到的堆信息有限。

为了诊断 GC 问题,建议在 JVM 参数中加上-XX:+PrintGCDateStamps。常用的 GC 参数如图 10 所示。

图 10. 常用 GC 参数

对于 Java 应用,通过 top+jstack+jmap+MAT 可以定位大多数应用和内存问题,可谓必备工具。有些时候,Java 应用诊断需要参考 OS 相关信息,可使用一些更全面的诊断工具,比如 Zabbix(整合了 OS 和 JVM 监控)等。在分布式环境中,分布式跟踪系统等基础设施也对应用性能诊断提供了有力支持。

七、性能优化实践

在介绍了一些常用的性能诊断工具后,下面将结合我们在 Java 应用调优中的一些实践,从 JVM 层、应用代码层以及数据库层进行案例分享。

JVM 调优:GC 之痛

XX商业平台某系统重构时选择 RMI 作为内部远程调用协议,系统上线后开始出现周期性的服务停止响应,暂停时间由数秒到数十秒不等。通过观察 GC 日志,发现服务自启动后每小时会出现一次 Full GC。由于系统堆设置较大,Full GC 一次暂停应用时间会较长,这对线上实时服务影响较大。

经过分析,在重构前系统没有出现定期 Full GC 的情况,因此怀疑是 RMI 框架层面的问题。通过公开资料,发现 RMI 的 GDC(Distributed Garbage Collection,分布式垃圾收集)会启动守护线程定期执行 Full GC 来回收远程对象,清单 2 中展示了其守护线程代码。

清单 2.DGC 守护线程源代码

private static class Daemon extends Thread { public void run() { for (;;) { //… long d = maxObjectInspectionAge(); if (d >= l) { System.gc(); 		d = 0; 	 } //… } }}

定位问题后解决起来就比较容易了。一种是通过增加-XX:+DisableExplicitGC 参数,直接禁用系统 GC 的显示调用,但对使用 NIO 的系统,会有堆外内存溢出的风险。

另一种方式是通过调大 -Dsun.rmi.dgc.server.gcInterval 和-Dsun.rmi.dgc.client.gcInterval 参数,增加 Full GC 间隔,同时增加参数-XX:+ExplicitGCInvokesConcurrent,将一次完全 Stop-The-World 的 Full GC 调整为一次并发 GC 周期,减少应用暂停时间,同时对 NIO 应用也不会造成影响。

从图 11 可知,调整之后的 Full GC 次数 在 3 月之后明显减少。

图 11.Full GC 监控统计

GC 调优对高并发大数据量交互的应用还是很有必要的,尤其是默认 JVM 参数通常不满足业务需求,需要进行专门调优。GC 日志的解读有很多公开的资料,本文不再赘述。

GC 调优目标基本有三个思路:降低 GC 频率,可以通过增大堆空间,减少不必要对象生成;降低 GC 暂停时间,可以通过减少堆空间,使用 CMS GC 算法实现;避免 Full GC,调整 CMS 触发比例,避免 Promotion Failure 和 Concurrent mode failure(老年代分配更多空间,增加 GC 线程数加快回收速度),减少大对象生成等。

作者:Java架构师追风

链接:

来源:简书

标签: #java性能调优