龙空技术网

五种常用且高效的排序算法性能总结

罗哥软件开发 236

前言:

现在朋友们对“排序算法效率分析怎么做”可能比较看重,朋友们都需要了解一些“排序算法效率分析怎么做”的相关知识。那么小编在网上网罗了一些对于“排序算法效率分析怎么做””的相关文章,希望看官们能喜欢,咱们一起来学习一下吧!

什么是排序算法?

排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存;我们通常所说的排序算法往往指的是内部排序算法,即数据记录在内存中进行排序。

插入排序

插入排序的基本操作是将一个记录插入到已经排好的有序表中,从而得到一个新的、记录数增1的有序表。对于给定的一组记录,初始时假定第一个记录自成一个有序序列,其余记录为无序序列。接着从第二个记录开始,按照记录的大小依次将当前处理的记录插入到其之前的有序序列中,直到最后一个记录插到有序序列中为止。

排序过程从第一个元素开始,该元素可以认为已经被排序取出下一个元素,在已经排序的元素序列中从后向前扫描如果该元素(已排序)大于新元素,将该元素移到下一位置重复步骤3,直到找到已排序的元素小于或者等于新元素的位置将新元素插入到该位置后重复步骤2~5算法实现选择排序

选择排序:比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素交换,至此选择排序完成。

排序过程由输入的无序数组构造一个最大堆,作为初始的无序区把堆顶元素(最大值)和堆尾元素互换把堆(无序区)的尺寸缩小1,并调用heapify(A, 0)从新的堆顶元素开始进行堆调整重复步骤2,直到堆的尺寸为1算法实现交换排序

交换排序:就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置。交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

排序过程从序列中挑出一个元素,作为"基准"(pivot).把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。算法实现归并排序

归并排序:将待排序序列R[0...n-1]看成是n个长度为1的有序序列,将相邻的有序表成对归并,得到n/2个长度为2的有序表;将这些有序序列再次归并,得到n/4个长度为4的有序序列;如此反复进行下去,最后得到一个长度为n的有序序列。

排序过程申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列设定两个指针,最初位置分别为两个已经排序序列的起始位置比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置重复步骤3直到某一指针到达序列尾将另一序列剩下的所有元素直接复制到合并序列尾算法实现基数排序

基数排序已经不再是一种常规的排序方式,它更多地像一种排序方法的应用,基数排序必须依赖于另外的排序方法。基数排序的总体思路就是将待排序数据拆分成多个关键字进行排序,也就是说,基数排序的实质是多关键字排序。

如果按照习惯思维,会先比较百位,百位大的数据大,百位相同的再比较十位,十位大的数据大;最后再比较个位。人得习惯思维是最高位优先方式。但一旦这样,当开始比较十位时,程序还需要判断它们的百位是否相同--这就认为地增加了难度,计算机通常会选择最低位优先法。

基数排序方法对任一子关键字排序时必须借助于另一种排序方法,而且这种排序方法必须是稳定的。对于多关键字拆分出来的子关键字,它们一定位于0-9这个可枚举的范围内,这个范围不大,因此用桶式排序效率非常好。对于多关键字排序来说,程序将待排数据拆分成多个子关键字后,对子关键字排序既可以使用桶式排序,也可以使用任何一种稳定的排序方法。

算法实现

标签: #排序算法效率分析怎么做 #排序算法效率分析怎么做出来的呢 #哪个排序算法效率最高