龙空技术网

二阶微分方程解法

答案鬼 577

前言:

而今朋友们对“非齐次线性方程组的解线性无关”大体比较着重,姐妹们都想要剖析一些“非齐次线性方程组的解线性无关”的相关文章。那么小编同时在网摘上搜集了一些有关“非齐次线性方程组的解线性无关””的相关文章,希望大家能喜欢,兄弟们快快来学习一下吧!

第六节二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法

教学重点:二阶常系数齐次线性微分方程的解法

教学过程:

一、二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程: 方程

y¢¢+py¢+qy=0

称为二阶常系数齐次线性微分方程, 其中pq均为常数.

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y=C1y1+C2y2就是它的通解.

我们看看, 能否适当选取r, 使y=erx 满足二阶常系数齐次线性微分方程, 为此将y=erx代入方程

y¢¢+py¢+qy=0

(r 2+pr+q)erx =0.

由此可见, 只要r满足代数方程r2+pr+q=0, 函数y=erx就是微分方程的解.

特征方程: 方程r2+pr+q=0叫做微分方程y¢¢+py¢+qy=0的特征方程. 特征方程的两个根r1、r2可用公式

添加图片注释,不超过 140 字(可选)

求出.

编辑切换为居中

添加图片注释,不超过 140 字(可选)

编辑切换为居中

添加图片注释,不超过 140 字(可选)

(3)特征方程有一对共轭复根r1, 2=a±ib时, 函数y=e(a+ib)xy=e(a-ib)x是微分方程的两个线性无关的复数形式的解. 函数y=eaxcosbxy=eaxsinbx是微分方程的两个线性无关的实数形式的解.

函数y1=e(a+ib)xy2=e(a-ib)x都是方程的解, 而由欧拉公式, 得

y1=e(a+ib)x=eax(cosbx+isinbx),

y2=e(a-ib)x=eax(cosbx-isinbx),

编辑切换为居中

添加图片注释,不超过 140 字(可选)

例2 求方程y¢¢+2y¢+y=0满足初始条件y|x=0=4、y¢| x=0=-2的特解.

解 所给方程的特征方程为

r2+2r+1=0, 即(r+1)2=0.

其根r1=r2=-1是两个相等的实根, 因此所给微分方程的通解为

y=(C1+C2x)e-x.

将条件y|x=0=4代入通解, 得C1=4, 从而

y=(4+C2x)e-x.

将上式对x求导, 得

y¢=(C2-4-C2x)e-x.

再把条件y¢|x=0=-2代入上式, 得C2=2. 于是所求特解为

x=(4+2x)e-x.

例 3 求微分方程y¢¢-2y¢+5y= 0的通解.

解 所给方程的特征方程为

r2-2r+5=0.

特征方程的根为r1=1+2i, r2=1-2i, 是一对共轭复根,

因此所求通解为

y=ex(C1cos2x+C2sin2x).

n 阶常系数齐次线性微分方程: 方程

y(n) +p1y(n-1)+p2 y(n-2) + × × × + pn-1y¢+pny=0,

称为n 阶常系数齐次线性微分方程, 其中 p1, p2 , × × × , pn-1, pn都是常数.

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n 阶常系数齐次线性微分方程上去.

引入微分算子D, 及微分算子的n次多项式:

L(D)=Dn +p1Dn-1+p2 Dn-2 + × × × + pn-1D+pn,

n阶常系数齐次线性微分方程可记作

(Dn +p1Dn-1+p2 Dn-2 + × × × + pn-1D+pn)y=0或L(D)y=0.

注: D叫做微分算子D0y=y, Dy=y¢, D2y=y¢¢, D3y=y¢¢¢, × × ×,Dny=y(n).

分析: 令y=erx, 则

L(D)y=L(D)erx=(rn +p1rn-1+p2 rn-2 + × × × + pn-1r+pn)erx=L(r)erx.

因此如果r是多项式L(r)的根, 则y=erx是微分方程L(D)y=0的解.

n 阶常系数齐次线性微分方程的特征方程:

L(r)=rn +p1rn-1+p2 rn-2 + × × × + pn-1r+pn=0

称为微分方程L(D)y=0的特征方程.

特征方程的根与通解中项的对应:

单实根r 对应于一项: Cerx ;

一对单复根r1, 2=a ±ib 对应于两项: eax(C1cosbx+C2sinbx);

k重实根r对应于k项: erx(C1+C2x+ × × × +Ck xk-1);

k 重复根r1, 2=a ±ib 对应于2k项:

eax[(C1+C2x+ × × × +Ck xk-1)cosbx+( D1+D2x+ × × × +Dk xk-1)sinbx].

例4 求方程y(4)-2y¢¢¢+5y¢¢=0 的通解.

解 这里的特征方程为

r4-2r3+5r2=0, 即r2(r2-2r+5)=0,

它的根是r1=r2=0和r3, 4=1±2i.

因此所给微分方程的通解为

y=C1+C2x+ex(C3cos2x+C4sin2x).

编辑切换为居中

添加图片注释,不超过 140 字(可选)

二、二阶常系数非齐次线性微分方程简介

二阶常系数非齐次线性微分方程: 方程

y¢¢+py¢+qy=f(x)

称为二阶常系数非齐次线性微分方程, 其中pq是常数.

二阶常系数非齐次线性微分方程的通解是对应的齐次方程

的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和:

y=Y(x)+ y*(x).

f(x)为两种特殊形式时, 方程的特解的求法:

一、 f(x)=Pm(x)elx

f(x)=Pm(x)elx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y*=Q(x)elx, 将其代入方程, 得等式

Q¢¢(x)+(2l+p)Q¢(x)+(l2+pl+q)Q(x)=Pm(x).

(1)如果l不是特征方程r2+pr+q=0 的根, 则l2+pl+q¹0. 要使上式成立, Q(x)应设为m 次多项式:

Qm(x)=b0xm+b1xm-1+ × × × +bm-1x+bm ,

通过比较等式两边同次项系数, 可确定b0, b1, × × × , bm, 并得所求特解

y*=Qm(x)elx.

(2)如果l是特征方程 r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p¹0, 要使等式

Q¢¢(x)+(2l+p)Q¢(x)+(l2+pl+q)Q(x)=Pm(x).

成立, Q(x)应设为m+1 次多项式:

Q(x)=xQm(x),

Qm(x)=b0xm +b1xm-1+ × × × +bm-1x+bm ,

通过比较等式两边同次项系数, 可确定b0, b1, × × × , bm, 并得所求特解

y*=xQm(x)elx.

(3)如果l是特征方程 r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式

Q¢¢(x)+(2l+p)Q¢(x)+(l2+pl+q)Q(x)=Pm(x).

成立, Q(x)应设为m+2次多项式:

Q(x)=x2Qm(x),

Qm(x)=b0xm+b1xm-1+ × × × +bm-1x+bm ,

通过比较等式两边同次项系数, 可确定b0, b1, × × × , bm , 并得所求特解

y*=x2Qm(x)elx.

综上所述, 我们有如下结论: 如果f(x)=Pm(x)elx, 则二阶常系数非齐次线性微分方程y¢¢+py¢+qy =f(x)有形如

y*=xk Qm(x)elx

的特解, 其中Qm(x)是与Pm(x)同次的多项式, 而kl不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.

例1 求微分方程y¢¢-2y¢-3y=3x+1的一个特解.

解 这是二阶常系数非齐次线性微分方程, 且函数f(x)是Pm(x)elx型(其中Pm(x)=3x+1, l=0).

与所给方程对应的齐次方程为

y¢¢-2y¢-3y=0,

它的特征方程为

r2-2r-3=0.

由于这里l=0不是特征方程的根, 所以应设特解为

y*=b0x+b1.

把它代入所给方程, 得

-3b0x-2b0-3b1=3x+1,

编辑切换为居中

添加图片注释,不超过 140 字(可选)

编辑切换为居中

添加图片注释,不超过 140 字(可选)

提示:

y*=x(b0x+b1)e2x=(b0x2+b1x)e2x,

[(b0x2+b1x)e2x]¢=[(2b0x+b1)+(b0x2+b1x)×2]e2x,

[(b0x2+b1x)e2x]¢¢=[2b0+2(2b0x+b1)×2+(b0x2+b1x)×22]e2x.

y*¢¢-5y*¢+6y*=[(b0x2+b1x)e2x]¢¢-5[(b0x2+b1x)e2x]¢+6[(b0x2+b1x)e2x]

=[2b0+2(2b0x+b1)×2+(b0x2+b1x)×22]e2x-5[(2b0x+b1)+(b0x2+b1x)×2]e2x+6(b0x2+b1x)e2x

=[2b0+4(2b0x+b1)-5(2b0x+b1)]e2x=[-2b0x+2b0-b1]e2x.

方程y¢¢+py¢+qy=elx[Pl (x)coswx+Pn(x)sinwx]的特解形式

应用欧拉公式可得

编辑切换为居中

添加图片注释,不超过 140 字(可选)

编辑切换为居中

添加图片注释,不超过 140 字(可选)

编辑切换为居中

添加图片注释,不超过 140 字(可选)

标签: #非齐次线性方程组的解线性无关 #非齐次方程组线性无关的解的个数 #非齐次线性方程组线性无关条件