前言:
今天朋友们对“php正序”大致比较注意,大家都想要了解一些“php正序”的相关内容。那么小编同时在网络上收集了一些对于“php正序””的相关资讯,希望我们能喜欢,你们一起来学习一下吧!题目
给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]nums2 = [2]
则中位数是 2.0示例 2:
nums1 = [1, 2]nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
思路
根据中位数的定义,当 m+n 是奇数时,中位数是两个有序数组中的第 (m+n)/2 个元素,当 m+n 是偶数时,中位数是两个有序数组中的第 (m+n)/2 个元素和第 (m+n)/2+1 个元素的平均值。因此,这道题可以转化成寻找两个有序数组中的第 k 小的数,其中 k 为 (m+n)/2 或 (m+n)/2+1。
实现
public double findMedianSortedArrays(int[] nums1, int[] nums2) { int length1 = nums1.length, length2 = nums2.length; int totalLength = length1 + length2; if (totalLength % 2 == 1) { int midIndex = totalLength / 2; double median = getKthElement(nums1, nums2, midIndex + 1); return median; } else { int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2; double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0; return median; } } public int getKthElement(int[] nums1, int[] nums2, int k) { int length1 = nums1.length, length2 = nums2.length; int index1 = 0, index2 = 0; int kthElement = 0; while (true) { // 边界情况 if (index1 == length1) { return nums2[index2 + k - 1]; } if (index2 == length2) { return nums1[index1 + k - 1]; } if (k == 1) { return Math.min(nums1[index1], nums2[index2]); } // 正常情况 int half = k / 2; int newIndex1 = Math.min(index1 + half, length1) - 1; int newIndex2 = Math.min(index2 + half, length2) - 1; int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2]; if (pivot1 <= pivot2) { k -= (newIndex1 - index1 + 1); index1 = newIndex1 + 1; } else { k -= (newIndex2 - index2 + 1); index2 = newIndex2 + 1; } } }
标签: #php正序