龙空技术网

OLAP数仓最全入门指南

胖哥叨一叨 182

前言:

而今同学们对“位图法管理分区”可能比较讲究,朋友们都想要知道一些“位图法管理分区”的相关知识。那么小编在网摘上搜集了一些关于“位图法管理分区””的相关知识,希望我们能喜欢,姐妹们快快来学习一下吧!

数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)、联机分析处理OLAP(On-Line Analytical Processing)。OLTP是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易、美国eBay的业务数据库等。OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。

1. OLAP与OLTP区别1.1. 功能区别

OLAP(On-Line Analytical Processing)联机分析处理,也称为面向交易的处理过程,其基本特征是前台接收的用户数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果,是对用户操作快速响应的方式之一。应用在数据仓库,使用对象是决策者。OLAP系统强调的是数据分析,响应速度要求没那么高。

OLTP(On-Line Transaction Processing)联机事务处理,它使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。它具有FASMI(Fast Analysis of Shared Multidimensional Information),即共享多维信息的快速分析的特征。主要应用是传统关系型数据库。OLTP系统强调的是内存效率,实时性比较高。

以下是OLAP和OLTP的比较:

1.2. 在企业业务中所处位置区别

业务类系统主要供基层人员使用,进行一线业务操作,通常被称为OLTP(On-Line Transaction Processing,联机事务处理)。

数据分析的目标则是探索并挖掘数据价值,作为企业高层进行决策的参考,通常被称为OLAP(On-Line Analytical Processing,联机分析处理)。

OLTP负责基本业务的正常运转,而业务数据积累时所产生的价值信息则被OLAP不断呈现,企业高层通过参考这些信息会不断调整经营方针,也会促进基础业务的不断优化,这是OLTP与OLAP最根本的区别。

OLAP不应该对OLTP产生任何影响,(理想情况下)OLTP应该完全感觉不到OLAP的存在。

1.3. 技术方向区别

OLTP 系统强调数据库内存效率,强调内存各种指标的命令率,强调绑定变量,强调并发操作;OLAP 系统则强调数据分析,强调SQL执行时长,强调磁盘I/O,强调分区等。

OLTP瓶颈和优化方向

OLTP是事务性非常高的系统,一般都是高可用的在线系统,以小的事务以及小的查询为主,评估其系统的时候,一般看其每秒执行的Transaction以及Execute SQL的数量。在这样的系统中,单个数据库每秒处理的Transaction往往超过几百个,或者是几千个,Select 语句的执行量每秒几千甚至几万个。典型的OLTP系统有电子商务系统、银行、证券等,如美国eBay的业务数据库,就是很典型的OLTP数据库。

OLTP系统最容易出现瓶颈的地方就是CPU与磁盘子系统。CPU出现瓶颈常表现在逻辑读总量与计算性函数或者是过程上,逻辑读总量等于单个语句的逻辑读乘以执行次数,如果单个语句执行速度虽然很快,但是执行次数非常多,那么,也可能会导致很大的逻辑读总量。磁盘子系统在OLTP环境中,它的承载能力一般取决于它的IOPS处理能力. 因为在OLTP环境中,磁盘物理读一般都是db file sequential read,也就是单块读,但是这个读的次数非常频繁。如果频繁到磁盘子系统都不能承载其IOPS的时候,就会出现大的性能问题。

OLTP比较常用的设计与优化方式为Cache技术与B-tree索引技术,Cache决定了很多语句不需要从磁盘子系统获得数据,所以,Web cache与Oracle data buffer对OLTP系统是很重要的。另外,在索引使用方面,语句越简单越好,这样执行计划也稳定,而且一定要使用绑定变量,减少语句解析,尽量减少表关联,尽量减少分布式事务,基本不使用分区技术、MV技术、并行技术及位图索引。因为并发量很高,批量更新时要分批快速提交,以避免阻塞的发生。

OLTP 系统是一个数据块变化非常频繁,SQL语句提交非常频繁的系统。 对于数据块来说,应尽可能让数据块保存在内存当中,对于SQL来说,尽可能使用变量绑定技术来达到SQL重用,减少物理I/O和重复的SQL解析,从而极大的改善数据库的性能。

这里影响性能除了绑定变量,还有可能是热块(hot block)。当一个块被多个用户同时读取时,Oracle 为了维护数据的一致性,需要使用Latch来串行化用户的操作。当一个用户获得了latch后,其他用户就只能等待,获取这个数据块的用户越多,等待就越明显。这就是热块的问题。 这种热块可能是数据块,也可能是回滚端块。 对于数据块来讲,通常是数据库的数据分布不均匀导致,如果是索引的数据块,可以考虑创建反向索引来达到重新分布数据的目的,对于回滚段数据块,可以适当多增加几个回滚段来避免这种争用。

OLAP瓶颈和优化方向

OLAP系统中,语句的执行量不是考核标准,因为一条语句的执行时间可能会非常长,读取的数据也非常多。所以,在这样的系统中,考核的标准往往是磁盘子系统的吞吐量(带宽),如能达到多少MB/s的流量。

磁盘子系统的吞吐量则往往取决于磁盘的个数,这个时候,Cache基本是没有效果的,数据库的读写类型基本上是db file scattered read与direct path read/write。应尽量采用个数比较多的磁盘以及比较大的带宽,如4Gb的光纤接口。

在OLAP系统的优化中,常使用分区技术、并行技术。

分区技术在OLAP系统中的重要性主要体现在数据库管理上,比如数据库加载,可以通过分区交换的方式实现,备份可以通过备份分区表空间实现,删除数据可以通过分区进行删除,至于分区在性能上的影响,它可以使得一些大表的扫描变得很快(只扫描单个分区)。另外,如果分区结合并行的话,也可以使得整个表的扫描会变得很快。总之,分区主要的功能是管理上的方便性,它并不能绝对保证查询性能的提高,有时候分区会带来性能上的提高,有时候会降低。

除此外常用优化技术还有基于代价的查询优化(CBO)、向量化执行引擎、动态代码生成机制、存储空间和访问效率优化、其他cpu和内存相关的计算层优化等。

2. OLAP分类2.1. 按数据量划分

对一件事物或一个东西基于不同角度,可以进行多种分类方式。对OLAP产品也一样。比如我们可以基于数据量来选择不同类型的数量,如下图所示:

数据量处于百万到百亿级别的偏实时的分析型数仓,Cloudera的Impala、Facebook的Presto和Pivotal的GreenPlum均属于这类系统;如果超过百亿级别数据量,那么一般选择离线数仓,如使用Hive或Spark等(SparkSQL3.0看起来性能提升很明显);对于数据量很小的情况,虽然是分析类应用,也可以直接选择普通的关系型数据库,比如MySQL等,“杀鸡焉用牛刀”。

2.2. 按数据模型划分

这里主要关注数据量中等(百万到百亿级别)的分析型数仓,聚焦OLAP系统。根据维基百科对OLAP的介绍,一般来说OLAP根据建模方式可分为MOLAP、ROLAP和HOLAP 3种类型,下面分别进行介绍并分析优缺点。

MOLAP

这应该算是最传统的数仓了,1993年Edgar F. Codd提出OLAP概念时,指的就是MOLAP数仓,M即表示多维(Multidimensional)。大多数MOLAP产品均对原始数据进行预计算得到用户可能需要的所有结果,将其存储到优化过的多维数组存储中。

由于所有可能结果均已计算出来并持久化存储,查询时无需进行复杂计算,且以数组形式可以进行高效的免索引数据访问,因此用户发起的查询均能够稳定地快速响应。这些结果集是高度结构化的,可以进行压缩/编码来减少存储占用空间。

但高性能并不是没有代价的。首先,MOLAP需要进行预计算,这会花去很多时间。如果每次写入增量数据后均要进行全量预计算,显然是低效率的,因此支持仅对增量数据进行迭代计算非常重要。其次,如果业务发生需求变更,需要进行预定模型之外新的查询操作,现有的MOLAP实例就无能为力了,只能重新进行建模和预计算。

因此,MOLAP适合业务需求比较固定,数据量较大的场景。在开源软件中,由eBay开发并贡献给Apache基金会的Kylin即属于这类OLAP引擎,支持在百亿规模的数据集上进行亚秒级查询。

ROLAP

与MOLAP相反,ROLAP无需预计算,直接在构成多维数据模型的事实表和维度表上进行计算。R即表示关系型(Relational)。显然,这种方式相比MOLAP更具可扩展性,增量数据导入后,无需进行重新计算,用户有新的查询需求时只需写好正确的SQL语句既能完成获取所需的结果。

但ROLAP的不足也很明显,尤其是在数据体量巨大的场景下,用户提交SQL后,获取查询结果所需的时间无法准确预知,可能秒回,也可能需要花费数十分钟甚至数小时。本质上,ROLAP是把MOLAP预计算所需的时间分摊到了用户的每次查询上,肯定会影响用户的查询体验。

当然ROLAP的性能是否能够接受,取决于用户查询的SQL类型,数据规模以及用户对性能的预期。对于相对简单的SQL,比如TPCH中的Query响应时间较快。但如果是复杂SQL,比如TPC-DS中的数据分析和挖掘类的Query,可能需要数分钟。

相比MOLAP,ROLAP的使用门槛更低,在完成星型或雪花型模型的构建,创建对应schema的事实表和维度表并导入数据后,用户只需会写出符合需求的SQL,就可以得到想要的结果。相比创建“数据立方体”,显然更加方便。

有分析表明,虽然ROLAP的性能不如MOLAP,但由于其灵活性、扩展性,ROLAP的使用者是MOLAP的数倍。

HOLAP

MOLAP和ROLAP各有优缺点,而且是互斥的。如果能够将两者的优点进行互补,那么是个更好的选择。而HOLAP的出现就是这个目的,H表示混合型(Hybrid),这个想法很朴素直接。对于查询频繁而稳定但又耗时的那些SQL,通过预计算来提速;对于较快的查询、发生次数较少或新的查询需求,像ROLAP一样直接通过SQL操作事实表和维度表。

目前似乎没有开源的OLAP系统属于这个类型,一些大数据服务公司或互联网厂商,比如HULU有类似的产品。相信未来HOLAP可能会得到进一步发展,并获得更大规模的使用。

HTAP

从另一个维度看,HTAP也算是一种OLAP类型的系统,是ROLAP的一个扩展,具备了OLAP的能力。最新发展显示,有云厂商在HTAP的基础上做了某种妥协,将T(transaction)弱化为S(Serving),朝HSAP方向演进。关于HTAP/HSAP,本文不做进一步展开,可自主查询其他资料。

3. 业界主要产品3.1. ROLAP产品

目前生产环境使用较多的开源ROLAP主要可以分为两大类,一个是宽表模型,另一个是多表组合模型(就是前述的星型或雪花型)。

宽表模型

宽表模型能够提供比多表组合模型更好的查询性能,不足的是支持的SQL操作类型比较有限,比如对Join等复杂操作支持较弱或不支持。

目前该类OLAP系统像ClickHouse, ClickHouse部署架构简单,易用,保存明细数据,依托其向量化查询、减枝等优化能力,具备强劲的查询性能。两者均具备较高的数据实时性,在互联网企业均有广泛使用。

除了上面介绍的ClickHouse外,ElasticSearch和Solar也可以归为宽表模型。但其系统设计架构有较大不同,这两个一般称为搜索引擎,通过倒排索引,应用Scatter-Gather计算模型提高查询性能。对于搜索类的查询效果较好,但当数据量较大或进行扫描聚合类查询时,查询性能会有较大影响。

多表组合模型

采用星型或雪花型建模是最通用的一种ROLAP系统,常见的包括GreenPlum、Presto和Impala等,他们均基于MPP架构,采用该模型和架构的系统具有支持的数据量大、扩展性较好、灵活易用和支持的SQL类型多样等优点。

相比其他类型ROLAP和MOLAP,该类系统性能不具有优势,实时性较一般。通用系统往往比专用系统更难实现和进行优化,这是因为通用系统需要考虑的场景更多,支持的查询类型更丰富。而专用系统只需要针对所服务的某个特定场景进行优化即可,相对复杂度会有所降低。

对于ROLAP系统,尤其是星型或雪花型的系统,如果能够尽可能得缩短响应时间非常重要,这将是该系统的核心竞争力。

3.2. MOLAP产品

常见的 MOLAP 产品有 Kylin、Druid。其中 Druid 是时序数据库,有它特定的应用场景。Kylin 的场景较为通用,是 MOLAP 开源产品的代表。

Kylin 从不同数据源读取数据后,通过 Cube 构建引擎形成 Cube 模型,然后物化存储到 HBase 中进行存储。而 HBase 本身是 NoSQL 数据库,且并发读取性能优秀,可以支撑快速查询的任务。

Kylin 因为只存储Cube模型,不存储原始数据,所以它适用场景是ADS层,作为数据查询接口。一般MOLAP不作为DWS层的模型,也是因为这个原因。

标签: #位图法管理分区