龙空技术网

Spark Codegen浅析

阿里云技术 89

前言:

今天姐妹们对“msige70apachepro012”大体比较珍视,兄弟们都想要学习一些“msige70apachepro012”的相关内容。那么小编也在网摘上收集了一些对于“msige70apachepro012””的相关内容,希望小伙伴们能喜欢,同学们一起来学习一下吧!

背景介绍

SparkSQL的优越性能背后有两大技术支柱:Optimizer和Runtime。前者致力于寻找最优的执行计划,后者则致力于把既定的执行计划尽可能快地执行出来。Runtime的多种优化可概括为两个层面:
1. 全局优化。从提升全局资源利用率、消除数据倾斜、降低IO等角度做优化,包括自适应执行(Adaptive Execution), Shuffle Removal等。
2. 局部优化。优化具体的Task的执行效率,主要依赖Codegen技术,具体包括Expression级别和WholeStage级别的Codegen。
本文介绍Spark Codegen的技术原理。

Case Study

本节通过两个具体case介绍Codegen的做法。

Expression级别

考虑下面的表达式计算:x + (1 + 2),用scala代码表达如下:

Add(Attribute(x), Add(Literal(1), Literal(2)))

语法树如下:

递归求值这棵语法树的常规代码如下:

tree.transformUp { case Attribute(idx) => Literal(row.getValue(idx)) case Add(Literal(c1),Literal(c2)) => Literal(c1+c2) case Literal(c) => Literal(c)}

执行上述代码需要做很多类型匹配、虚函数调用、对象创建等额外逻辑,这些overhead远超对表达式求值本身。
为了消除这些overhead,Spark Codegen直接拼成求值表达式的java代码并进行即时编译。具体分为三个步骤:
1. 代码生成。根据语法树生成java代码,封装在wrapper类中:

... // class wrapperrow.getValue(idx) + (1 + 2)... // class wrapper

2. 即时编译。使用Janino框架把生成代码编译成class文件。
3. 加载执行。最后加载并执行。
优化前后性能有数量级的提升。

WholeStage级别

考虑如下的sql语句:

select count(*) from store_saleswhere ss_item_sk=1000;

生成的物理执行计划如下:

执行该计划的常规做法是使用火山模型(vocano model),每个Operator都继承了Iterator接口,其next()方法首先驱动上游执行拿到输入,然后执行自己的逻辑。代码示例如下:

class Agg extends Iterator[Row] { def doAgg() { while (child.hasNext()) { val row = child.next(); // do aggregation ... } } def next(): Row { if (!doneAgg) { doAgg(); } return aggIter.next(); }}class Filter extends Iterator[Row] { def next(): Row { var current = child.next() while (current != null && !predicate(current)) { current = child.next() } return current; }}

从上述代码可知,火山模型会有大量类型转换和虚函数调用。虚函数调用会导致CPU分支预测失败,从而导致严重的性能回退。
为了消除这些overhead,Spark WholestageCodegen会为该物理计划生成类型确定的java代码,然后类似Expression的做法即时编译和加载执行。本例生成的java代码示例如下(非真实代码,真实代码片段见后文):

var count = 0for (ss_item_sk in store_sales) { if (ss_item_sk == 1000) { count += 1 }}

优化前后性能提升数据如下:

Spark Codegen框架

Spark Codegen框架有三个核心组成部分
1. 核心接口/类
2. CodegenContext
3. Produce-Consume Pattern

接下来详细介绍。

接口/类

四个核心接口:
1. CodegenSupport(接口)
实现该接口的Operator可以将自己的逻辑拼成java代码。重要方法:

produce() // 输出本节点产出Row的java代码consume() // 输出本节点消费上游节点输入的Row的java代码

实现类包括但不限于: ProjectExec, FilterExec, HashAggregateExec, SortMergeJoinExec。
2. WholeStageCodegenExec(类)
CodegenSupport的实现类之一,Stage内部所有相邻的实现CodegenSupport接口的Operator的融合,产出的代码把所有被融合的Operator的执行逻辑封装到一个Wrapper类中,该Wrapper类作为Janino即时compile的入参。
3. InputAdapter(类)
CodegenSupport的实现类之一,胶水类,用来连接WholeStageCodegenExec节点和未实现CodegenSupport的上游节点。
4. BufferedRowIterator(接口)
WholeStageCodegenExec生成的java代码的父类,重要方法:

public InternalRow next() // 返回下一条Rowpublic void append(InternalRow row) // append一条Row

CodegenContext

管理生成代码的核心类。主要涵盖以下功能:

1.命名管理。保证同一Scope内无变量名冲突。
2.变量管理。维护类变量,判断变量类型(应该声明为独立变量还是压缩到类型数组中),维护变量初始化逻辑等。
3.方法管理。维护类方法。
4.内部类管理。维护内部类。
5.相同表达式管理。维护相同子表达式,避免重复计算。
6.size管理。避免方法、类size过大,避免类变量数过多,进行比较拆分。如把表达式块拆分成多个函数;把函数、变量定义拆分到多个内部类。
7.依赖管理。维护该类依赖的外部对象,如Broadcast对象、工具对象、度量对象等。
8.通用模板管理。提供通用代码模板,如genComp, nullSafeExec等。

Produce-Consume Pattern

相邻Operator通过Produce-Consume模式生成代码。
Produce生成整体处理的框架代码,例如aggregation生成的代码框架如下:

if (!initialized) { # create a hash map, then build the aggregation hash map # call child.produce() initialized = true;}while (hashmap.hasNext()) { row = hashmap.next(); # build the aggregation results # create variables for results # call consume(), which will call parent.doConsume() if (shouldStop()) return;}

Consume生成当前节点处理上游输入的Row的逻辑。如Filter生成代码如下:

# code to evaluate the predicate expression, result is isNull1 and value2if (!isNull1 && value2) { # call consume(), which will call parent.doConsume()}

下图比较清晰地展示了WholestageCodegen生成java代码的call graph:

Case Study的示例,生成的真实代码如下:

== Subtree 1 / 2 ==*(2) HashAggregate(keys=[], functions=[count(1)], output=[count(1)#326L])+- Exchange SinglePartition +- *(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L]) +- *(1) Project +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000)) +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>Generated code:/* 001 */ public Object generate(Object[] references) {/* 002 */ return new GeneratedIteratorForCodegenStage2(references);/* 003 */ }/* 004 *//* 005 */ // codegenStageId=2/* 006 */ final class GeneratedIteratorForCodegenStage2 extends org.apache.spark.sql.execution.BufferedRowIterator {/* 007 */ private Object[] references;/* 008 */ private scala.collection.Iterator[] inputs;/* 009 */ private boolean agg_initAgg_0;/* 010 */ private boolean agg_bufIsNull_0;/* 011 */ private long agg_bufValue_0;/* 012 */ private scala.collection.Iterator inputadapter_input_0;/* 013 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] agg_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];/* 014 *//* 015 */ public GeneratedIteratorForCodegenStage2(Object[] references) {/* 016 */ this.references = references;/* 017 */ }/* 018 *//* 019 */ public void init(int index, scala.collection.Iterator[] inputs) {/* 020 */ partitionIndex = index;/* 021 */ this.inputs = inputs;/* 022 *//* 023 */ inputadapter_input_0 = inputs[0];/* 024 */ agg_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);/* 025 *//* 026 */ }/* 027 *//* 028 */ private void agg_doAggregateWithoutKey_0() throws java.io.IOException {/* 029 */ // initialize aggregation buffer/* 030 */ agg_bufIsNull_0 = false;/* 031 */ agg_bufValue_0 = 0L;/* 032 *//* 033 */ while (inputadapter_input_0.hasNext() && !stopEarly()) {/* 034 */ InternalRow inputadapter_row_0 = (InternalRow) inputadapter_input_0.next();/* 035 */ long inputadapter_value_0 = inputadapter_row_0.getLong(0);/* 036 *//* 037 */ agg_doConsume_0(inputadapter_row_0, inputadapter_value_0);/* 038 */ if (shouldStop()) return;/* 039 */ }/* 040 *//* 041 */ }/* 042 *//* 043 */ private void agg_doConsume_0(InternalRow inputadapter_row_0, long agg_expr_0_0) throws java.io.IOException {/* 044 */ // do aggregate/* 045 */ // common sub-expressions/* 046 *//* 047 */ // evaluate aggregate function/* 048 */ long agg_value_3 = -1L;/* 049 */ agg_value_3 = agg_bufValue_0 + agg_expr_0_0;/* 050 */ // update aggregation buffer/* 051 */ agg_bufIsNull_0 = false;/* 052 */ agg_bufValue_0 = agg_value_3;/* 053 *//* 054 */ }/* 055 *//* 056 */ protected void processNext() throws java.io.IOException {/* 057 */ while (!agg_initAgg_0) {/* 058 */ agg_initAgg_0 = true;/* 059 */ long agg_beforeAgg_0 = System.nanoTime();/* 060 */ agg_doAggregateWithoutKey_0();/* 061 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);/* 062 *//* 063 */ // output the result/* 064 *//* 065 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);/* 066 */ agg_mutableStateArray_0[0].reset();/* 067 *//* 068 */ agg_mutableStateArray_0[0].zeroOutNullBytes();/* 069 *//* 070 */ agg_mutableStateArray_0[0].write(0, agg_bufValue_0);/* 071 */ append((agg_mutableStateArray_0[0].getRow()));/* 072 */ }/* 073 */ }/* 074 *//* 075 */ }== Subtree 2 / 2 ==*(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L])+- *(1) Project +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000)) +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>Generated code:/* 001 */ public Object generate(Object[] references) {/* 002 */ return new GeneratedIteratorForCodegenStage1(references);/* 003 */ }/* 004 *//* 005 */ // codegenStageId=1/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {/* 007 */ private Object[] references;/* 008 */ private scala.collection.Iterator[] inputs;/* 009 */ private boolean agg_initAgg_0;/* 010 */ private boolean agg_bufIsNull_0;/* 011 */ private long agg_bufValue_0;/* 012 */ private long scan_scanTime_0;/* 013 */ private boolean outputMetaColumns;/* 014 */ private int scan_batchIdx_0;/* 015 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] scan_mutableStateArray_3 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];/* 016 */ private org.apache.spark.sql.vectorized.ColumnarBatch[] scan_mutableStateArray_1 = new org.apache.spark.sql.vectorized.ColumnarBatch[1];/* 017 */ private scala.collection.Iterator[] scan_mutableStateArray_0 = new scala.collection.Iterator[1];/* 018 */ private org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[] scan_mutableStateArray_2 = new org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[1];/* 019 *//* 020 */ public GeneratedIteratorForCodegenStage1(Object[] references) {/* 021 */ this.references = references;/* 022 */ }/* 023 *//* 024 */ public void init(int index, scala.collection.Iterator[] inputs) {/* 025 */ partitionIndex = index;/* 026 */ this.inputs = inputs;/* 027 *//* 028 */ scan_mutableStateArray_0[0] = inputs[0];/* 029 */ outputMetaColumns = false;/* 030 */ scan_mutableStateArray_3[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);/* 031 */ scan_mutableStateArray_3[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);/* 032 */ scan_mutableStateArray_3[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);/* 033 *//* 034 */ }/* 035 *//* 036 */ private void agg_doAggregateWithoutKey_0() throws java.io.IOException {/* 037 */ // initialize aggregation buffer/* 038 */ agg_bufIsNull_0 = false;/* 039 */ agg_bufValue_0 = 0L;/* 040 *//* 041 */ if (scan_mutableStateArray_1[0] == null) {/* 042 */ scan_nextBatch_0();/* 043 */ }/* 044 */ while (scan_mutableStateArray_1[0] != null) {/* 045 */ int scan_numRows_0 = scan_mutableStateArray_1[0].numRows();/* 046 */ int scan_localEnd_0 = scan_numRows_0 - scan_batchIdx_0;/* 047 */ for (int scan_localIdx_0 = 0; scan_localIdx_0 < scan_localEnd_0; scan_localIdx_0++) {/* 048 */ int scan_rowIdx_0 = scan_batchIdx_0 + scan_localIdx_0;/* 049 */ if (!scan_mutableStateArray_1[0].validAt(scan_rowIdx_0)) { continue; }/* 050 */ do {/* 051 */ boolean scan_isNull_0 = scan_mutableStateArray_2[0].isNullAt(scan_rowIdx_0);/* 052 */ long scan_value_0 = scan_isNull_0 ? -1L : (scan_mutableStateArray_2[0].getLong(scan_rowIdx_0));/* 053 *//* 054 */ if (!(!scan_isNull_0)) continue;/* 055 *//* 056 */ boolean filter_value_2 = false;/* 057 */ filter_value_2 = scan_value_0 == 1000L;/* 058 */ if (!filter_value_2) continue;/* 059 *//* 060 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* numOutputRows */).add(1);/* 061 *//* 062 */ agg_doConsume_0();/* 063 *//* 064 */ } while(false);/* 065 */ // shouldStop check is eliminated/* 066 */ }/* 067 */ scan_batchIdx_0 = scan_numRows_0;/* 068 */ scan_mutableStateArray_1[0] = null;/* 069 */ scan_nextBatch_0();/* 070 */ }/* 071 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* scanTime */).add(scan_scanTime_0 / (1000 * 1000));/* 072 */ scan_scanTime_0 = 0;/* 073 *//* 074 */ }/* 075 *//* 076 */ private void scan_nextBatch_0() throws java.io.IOException {/* 077 */ long getBatchStart = System.nanoTime();/* 078 */ if (scan_mutableStateArray_0[0].hasNext()) {/* 079 */ scan_mutableStateArray_1[0] = (org.apache.spark.sql.vectorized.ColumnarBatch)scan_mutableStateArray_0[0].next();/* 080 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(scan_mutableStateArray_1[0].numRows());/* 081 */ scan_batchIdx_0 = 0;/* 082 */ scan_mutableStateArray_2[0] = (org.apache.spark.sql.execution.vectorized.OffHeapColumnVector) (outputMetaColumns ?/* 083 */ scan_mutableStateArray_1[0].column(0, true) : scan_mutableStateArray_1[0].column(0));/* 084 *//* 085 */ }/* 086 */ scan_scanTime_0 += System.nanoTime() - getBatchStart;/* 087 */ }/* 088 *//* 089 */ private void agg_doConsume_0() throws java.io.IOException {/* 090 */ // do aggregate/* 091 */ // common sub-expressions/* 092 *//* 093 */ // evaluate aggregate function/* 094 */ long agg_value_1 = -1L;/* 095 */ agg_value_1 = agg_bufValue_0 + 1L;/* 096 */ // update aggregation buffer/* 097 */ agg_bufIsNull_0 = false;/* 098 */ agg_bufValue_0 = agg_value_1;/* 099 *//* 100 */ }/* 101 *//* 102 */ protected void processNext() throws java.io.IOException {/* 103 */ while (!agg_initAgg_0) {/* 104 */ agg_initAgg_0 = true;/* 105 */ long agg_beforeAgg_0 = System.nanoTime();/* 106 */ agg_doAggregateWithoutKey_0();/* 107 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[4] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);/* 108 *//* 109 */ // output the result/* 110 *//* 111 */ ((org.apache.spark.sql.execution.metric.SQLMetric) references[3] /* numOutputRows */).add(1);/* 112 */ scan_mutableStateArray_3[2].reset();/* 113 *//* 114 */ scan_mutableStateArray_3[2].zeroOutNullBytes();/* 115 *//* 116 */ scan_mutableStateArray_3[2].write(0, agg_bufValue_0);/* 117 */ append((scan_mutableStateArray_3[2].getRow()));/* 118 */ }/* 119 */ }/* 120 *//* 121 */ }

阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区数个Spark技术同学每日在线答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!

作者:周克勇,花名一锤,阿里巴巴计算平台事业部EMR团队技术专家,大数据领域技术爱好者,对Spark有浓厚兴趣和一定的了解,目前主要专注于EMR产品中开源计算引擎的优化工作。

本文为云栖社区内容,未经允许不得转载。

标签: #msige70apachepro012