前言:
当前看官们对“车牌定位技术”大约比较关心,姐妹们都想要分析一些“车牌定位技术”的相关资讯。那么小编在网上搜集了一些有关“车牌定位技术””的相关资讯,希望小伙伴们能喜欢,兄弟们快快来了解一下吧!近年来,车牌识别技术已被广泛应用于城市智能交通系统中,如闯红灯抓拍、超速行驶违章抓拍以及交通治安卡口系统等,尤其是交通治安卡口系统,其作为治安刑侦管理的重要科技手段之一,对车牌识别技术提出了更高的要求,促进了车牌识别技术的快速发展。
2016年元旦假期虽然没有实现7座以下小客车高速免费通行,但是一些热门一点的高速路段依然被堵成了停车场,不过大部分来说整体有改观。有不少出行者称,在ETC实现全国联网之后,使用ETC通道过高速收费站比以往减断的时间少了不止10秒钟,这也成为减少高速拥堵情况的一大原因。ETC通道能实现快速汽车快速通过,自动栏杆机功能的重要性不言而喻,但是车牌识别技术也发挥不可替代的作用。
车牌识别技术(LicensePlateRecognition,LPR)是以计算机技术、图像处理技术、模糊识别为基础,建立车辆的特征模型,识别车辆特征,如号牌、车型、颜色等。它是一个以特定目标为对象的专用计算机视觉系统,能从一幅图像中自动提取车牌图像,自动分割字符,进而对字符进行识别,它运用先进的图像处理、模式识别和人工智能技术,对采集到的图像信息进行处理,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并直接给出识别结果,使得车辆的电脑化监控和管理成为现实。
与传统的射频卡刷卡管理系统相比,车牌识别系统最大的优点是:第一、可以完全实现无干扰、不停车通行;第二、真正实现车辆一车一杆的通行管理要求,杜绝传车卡互换情况的发生;第三、实现车场管理收费的完全电脑化记录、统计,最大程度减少了停车费用的流失。
系统前端采用了嵌入式高清一体化摄像机,可实现百万级分辨率的视频和图片码流输出,内置了高性能DSP芯片,支持内置智能算法、可实现视频检测、车牌识别等功能。
内置相机的车牌识别系统使用了独特的纹理+模型算法,具有定位精准,识别速度快,识别精度高,误识率低等特点,不但能捕获有车牌的车辆,对于无牌车同样也能进行正常捕获。将传统模式中基于后端服务器或前端工控机的车牌识别算法移植到前端相机中,具有高集成度,高稳定性,高适应性等特点,相比传统的PC或工控机模式,更能适应实际道路的复杂环境,更能满足智能交通系统中全天候工作的要求。
采用了动态视频识别技术,实现对视频流每一帧图像进行识别,从而达到增加识别比对次数,大大提高了识别的效率和准确率。
车牌识别主要是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。
车牌识别的具体步骤分为车牌定位、车牌提取、字符识别。在自然环境中,相机首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。
完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别,车牌识别算法采用基于模板匹配算法,首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果,通过这种多次比对的方式极大了提高了车牌识别的准确率。
车牌识别系统经过多年的发展,已是一项较为成熟的技术。传统的车牌识别系统基于模拟标清图像来进行检测和识别,由于标清图像分辨率低,层次感不强且视场较小等原因,导致车牌识别不能达到理想的效果,往往为了达到车牌识别率而需要牺牲车辆全景,因此需要通过两台摄像机配合来完成车牌的特写和车辆全景的记录,系统复杂度较高。
相信在未来几年,随着各地高清智能交通系统的不断应用建设,车牌识别技术会逐步向高清化、集成化、智能化发展,在各个应用系统中,将会不断发挥其越来越重要的作用。
文通技术支持:郑明辉:壹叁叁柒壹陆贰壹壹贰玖
标签: #车牌定位技术