龙空技术网

人工神经网络主要哪几部分组成,具体的定义是什么?

多智时代 167

前言:

如今我们对“人工神经网络的基本概念包括”大约比较重视,大家都需要剖析一些“人工神经网络的基本概念包括”的相关文章。那么小编在网摘上收集了一些对于“人工神经网络的基本概念包括””的相关内容,希望看官们能喜欢,各位老铁们快快来学习一下吧!

人工神经网络主要架构是由神经元、层和网络三个部分组成。整个人工神经网络包含一系列基本的神经元、通过权重相互连接。

神经元是人工神经网络最基本的单元。单元以层的方式组,每一层的每个神经元和前一层、后一层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一个神经网络。

输入层只从外部环境接收信息,是由输入单元组成,而这些输入单元可接收样本中各种不同的特征信息。该层的每个神经元相当于自变量,不完成任何计算,只为下一层传递信息;隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。而最后,输出层生成最终结果,每个输出单元会对应到某一种特定的分类,为网络送给外部系统的结果值,,整个网络由调整链接强度的程序来达成学习的目的。

假如输出单元的输出值 和所预期的值相同,那么连接到此输出单元的链接强度则不被改变。但如果应该输出1的单元却输出0,那么连接到这个单元的链接强度则会被加强。相反,如果应该输出0却输出1,那么连接到此输出单元的链接强度则会被降低。简单地说,达成收敛的效果是这个学习程序的主要目标。目前尚没有统一的标准方法可以计算人工神经网络的最佳层数。

标签: #人工神经网络的基本概念包括